
THE INDEPENDENT MAGAZINE FOR THE UBUNTU LINUX COMMUNITY

PROGRAMMING SERIES SPECIAL EDITION

 Volume Volume TwelveTwelve
 Parts Parts 67 - 72 67 - 72

Full Circle

Full Circle Magazine is neither ailiated, with nor endorsed by, Canonical Ltd.

PYTHONPYTHON
In the Real WorldIn the Real World

full circle magazine #1 1 0 1 7 contents ^

HHOOWW--TTOO
Written by Greg D. Walters PPyytthhoonn II nn TThhee RReeaall WWoorrlldd -- PPtt 6677

T his month, we will be using my

current favorite temperature

sensor; the Dallas Semiconductor

DS1 8B20 One Wire sensor. It looks

like a ‘normal’ transistor, but is a

very accurate sensor, much more

so than the DHT1 1 that we used

last month. It doesn’t do humidity,

but for temperature readings, it’s a

very good and inexpensive device.

All data requests and output are

sent on a single pin. It has an

operating range from -55°C to

1 25°C (-67°F to 257°F) and should

be able to run about 3 metres (9.8

feet) . It also has a parasitic mode

that allows power to be derived

from the data line.

The data sheet can be found at

https://datasheets.maximintegrate

d.com/en/ds/DS1 8B20.pdf. Here is

what one sort of looks like…

Wiring a single sensor is very

easy. Shown right is the diagram.

There are only three

connections to the RPi. Ground

(sensor pin 1) to RPi pin 6, 3.3v

(sensor pin 3) to RPi pin 1 , and data

(sensor pin 2) to RPI pin 7 (GPIO 4).

You need to put a 4.7k resistor

between sensor pins 2 and 3 (data

and +Voltage). That’s it. If you wish

to add more sensors to the project,

simply connect them ground to

ground, +voltage to +voltage and

pin 2 to pin 2 of the “main” sensor.

No additional resistors should be

needed for a reasonable line

length. Next page, right-hand side,

is an example of a three sensor

project.

THE CODE

One thing you have to do is tell

the operating system you want to

use kernel support for one-wire

devices. If you are using Raspbian

Jessie, this is done in raspi-config.

If you are using another OS, then

you must add the following line to

the /boot/config.txt file.

https://datasheets.maximintegrated.com/en/ds/DS18B20.pdf

full circle magazine #1 1 0 1 8 contents ^

HOWTO - PYTHON

dtoverlay=w1-gpio

The following two commands

load the 1 -Wire and thermometer

drivers on GPIO 4.

sudo modprobe w1-gpio

sudo modprobe w1-therm

We then need to change

directory cd to our 1 -Wire device

folder and list ls the devices in

order to ensure that our

thermometer has loaded correctly.

cd /sys/bus/w1/devices/

ls

In the device drivers, your

sensor should be listed as a series

of numbers and letters. In this

case, the device is registered as 28-

000005e2fdc3. You then need to

access the sensor with the cd

command, replacing our serial

number with your own.

cd 28-000005e2fdc3

The sensor periodically writes

to the w1 _slave file, so we simply

use the cat command to read it.

cat w1_slave

This yields the following two

lines of text, with the output t=

showing the temperature in

degrees Celsius. A decimal point

should be placed before the

ending three digits, e.g. the

temperature reading we’ve

received is 23.1 25 degrees Celsius.

72 01 4b 46 7f ff 0e 10 57 :
crc=57 YES

72 01 4b 46 7f ff 0e 10 57
t=23125

Next page, top right, is how we

had to do it in the “old days”, the

library that we will actually use.

Timo Furrer has provided a

wonderful library for us to use on

the RPi written in pure Python. You

can get it at

https://github.com/timofurrer/w1 t

hermsensor. The current version is

0.3.1 and is also available through

pypi.

The beauty of this library is that

it takes almost all the work out of

dealing with the sensors and

allows you to just concentrate on

your code.

Next page, bottom right, is the

“current day” code using Timo’s

library...

https://github.com/timofurrer/w1thermsensor

full circle magazine #1 1 0 1 9 contents ^

HOWTO - PYTHON

There are actually only 7 lines

of code needed here. Those lines

that are commented out are so you

can see the other ways to get and

print the data in various

temperature units (celsius and

kelvin) .

As I mentioned above, you can

have more than one sensor on the

same data line. So here is the code

to make a single call to get the

temp readings from all sensors in

the system…

from w1thermsensor import
W1ThermSensor

for sensor in
W1ThermSensor.get_available_s
ensors():

print("Sensor %s has
temperature %.2f" %
(sensor.id,
sensor.get_temperature()))

Of course, you’ll want to do

more than one data pull, so use the

code above to modify it the way

you want.

If you would like to make a call

to a particular sensor, you can use

this code as a baseline.

from w1thermsensor import
W1ThermSensor

sensor =

W1ThermSensor(W1ThermSensor.T
HERM_SENSOR_DS18B20, "28-
000007444532")

temperature_in_celsius =
sensor.get_temperature()

So, you can see, by using Timo‘s

library, we can basically go from 27

lines of code to 3 (for a single call) .

That’s wonderful.

I wanted to show you how to

use a 1 6x2 LCD display with this,

but I think I ’ll leave room for the

other authors and we’ll push that

part out to next month. Don’t lose

your project hardware, we’ll use it

next month.

Until then, enjoy checking out

the temperatures around your

office/abode.

import os
import glob
import time
os.system('modprobe w1-gpio')
os.system('modprobe w1-therm')
base_dir = '/sys/bus/w1/devices/'
device_folder = glob.glob(base_dir + '28*')[0]
device_file = device_folder + '/w1_slave'
def read_temp_raw():

f = open(device_file, 'r')
lines = f.readlines()
f.close()
return lines

def read_temp():
lines = read_temp_raw()
while lines[0].strip()[-3:] != 'YES':

time.sleep(0.2)
lines = read_temp_raw()

equals_pos = lines[1].find('t=')
if equals_pos != -1:

temp_string = lines[1][equals_pos+2:]
temp_c = float(temp_string) / 1000.0
temp_f = temp_c * 9.0 / 5.0 + 32.0
return temp_c, temp_f

while True:
print(read_temp())
time.sleep(1)

from w1thermsensor import W1ThermSensor
from time import sleep
sensor = W1ThermSensor()
while 1:

temp_in_celsius = sensor.get_temperature()
temp_in_fahrenheit = sensor.get_temperature(W1ThermSensor.DEGREES_F)
temp_in_all_units = sensor.get_temperatures([W1ThermSensor.DEGREES_C, _

W1ThermSensor.DEGREES_F, W1ThermSensor.KELVIN])
print temp_in_fahrenheit
print temp_in_celsius
print temp_in_all_units
sleep(3)

full circle magazine #1 1 1 1 7 contents ^

HH OOWW--TTOO
Written by Greg D. Walters PPyytthh oonn II nn TThh ee RReeaa ll WWoorrlldd -- PPtt 6688

L ast month, we worked with the

DS1 8B20 Temperature Sensor.

This month we will start to

interface a 1 6x2 LCD display to

show our temperatures. Don’t tear

down your setup, but make sure

you have enough room to mount

the display on your breadboard.

You’ll need about 32 pinholes for

the length of the device and 1 6 for

the pins to connect to. You will

have only three pinholes left if you

mount the display at the bottom of

the vertical holes, so you will need

to use some jumpers to connect

the bottom verticals to the top

verticals.

Of course, the 1 6x2 display has

1 6 characters on two rows. The

backlight comes in many colours. I

chose a blue one. We can address

each of the 32 character positions

individually, or print pretty much

like we do to the regular monitor.

We will be making 8

connections to the RPi as well as

the three that we used for the

temperature sensor last month.

You will need the following

additional items for this month:

• 1 0K Potentiometer

• 1 6x2 LCD Display

• Many breadboard jumpers, Male

to Male and 8 Male to Female

By the time you are done, the

wiring diagram (and the resulting

board) will look like a bit of a rat’s

nest, but go slowly – make sure you

have the wiring correct.

As you can see in the graphic

above, it’s pretty crazy, so I ’ll lay

out all the wiring for you in text.

First, you will need to put a

jumper between the two

horizontal busses on both the top

and bottom. That way, you’ll have

power and ground on both busses.

I chose to do it on the left side, but

you can put it anywhere that is

convenient for you. The next thing

to do is to wire in the

potentiometer. One side (it doesn’t

matter which) needs to go to

ground and the other side to our 5

volt supply. The center contact

(the wiper) will wire to pin 3 of the

LCD display. This controls the

contrast, so you can control how

bright the characters appear. You

should already have 5 volts to the

board, as well as ground, from last

month.

On the display, connect pin 1 to

ground and pin 2 to the +5 volt

buss. That makes three

connections out of the twelve we

need. Pin 6 of the display goes to

pin 22 of the RPi. This is the Enable

full circle magazine #1 1 1 1 8 contents ^

HOWTO - PYTHON

pin. Pin 5 on the display goes to

ground, and pin 4 to pin 27 on the

RPi. We are up to 6 connections so

far. That makes us halfway there.

Because we have to use pin 4 for

our sensor, we can’t control the

backlight.

Now we will work backwards

from pin 1 6. Pin 1 6 goes to ground,

and pin 1 5 to +5v. Pin 1 5 is actually

the backlight voltage on mine. If

you find the display too bright, you

could put the wiper of another

potentiometer connected between

+5v and ground and control the

display backlight.

Now for the data lines. There

are actually 8 data lines, but

thankfully, we will be using only 4.

Pins 1 1 to 1 4 are D4, D5, D6 and

D7 (counting from 0). Here is the

connection list.

Now everything is hooked up,

so we will continue with some

sample code to test the display.

But we need to get the Adafruit

python library for LCDs. In a

#!/usr/bin/python
Example using a character LCD connected to a Raspberry Pi or BeagleBone Black.
import time
import Adafruit_CharLCD as LCD
Raspberry Pi pin configuration:
lcd_rs = 27 # Note this might need to be changed to 21 for older revision Pi's.
lcd_en = 22
lcd_d4 = 25
lcd_d5 = 24
lcd_d6 = 23
lcd_d7 = 18
lcd_backlight = 4
Define LCD column and row size for 16x2 LCD.
lcd_columns = 16
lcd_rows = 2
Alternatively specify a 20x4 LCD.
lcd_columns = 20
lcd_rows = 4
Initialize the LCD using the pins above.
lcd = LCD.Adafruit_CharLCD(lcd_rs, lcd_en, lcd_d4, lcd_d5, lcd_d6, lcd_d7,

lcd_columns, lcd_rows, lcd_backlight)
Print a two line message
lcd.message('Hello\nworld!')
Wait 5 seconds
time.sleep(5.0)
Demo showing the cursor.
lcd.clear()
lcd.show_cursor(True)
lcd.message('Show cursor')
time.sleep(5.0)
Demo showing the blinking cursor.
lcd.clear()
lcd.blink(True)
lcd.message('Blink cursor')
time.sleep(5.0)
Stop blinking and showing cursor.
lcd.show_cursor(False)
lcd.blink(False)
Demo scrolling message right/left.
lcd.clear()
message = 'Scroll'
lcd.message(message)
for i in range(lcd_columns-len(message)):

time.sleep(0.5)
lcd.move_right()

for i in range(lcd_columns-len(message)):
time.sleep(0.5)
lcd.move_left()

Demo turning backlight off and on.
lcd.clear()
lcd.message('Flash backlight\nin 5 seconds...')
time.sleep(5.0)
Turn backlight off.
lcd.set_backlight(0)
time.sleep(2.0)
Change message.
lcd.clear()
lcd.message('Goodbye!')
Turn backlight on.
lcd.set_backlight(1)

full circle magazine #1 1 1 1 9 contents ^

Greg Walters is owner of RainyDay
Solutions, LLC, a consulting company
in Aurora, Colorado, and has been
programming since 1 972. He enjoys
cooking, hiking, music, and spending
time with his family.

HOWTO - PYTHON

terminal window, type the

following...

git clone
https://github.com/adafruit/A
dafruit_Python_CharLCD

cd Adafruit_Python_CharLCD

sudo python setup.py install

cd examples

Now load char_lcd.py into your

favorite editor. Or, you could type

it in from the previous page.

Ignore the backlight messages,

but you should see...

Hello World!
Show Cursor_
Blink Cursor_
Scroll (right and left)
Flash backlight in 5
seconds...
Goodbye!

I f everything worked, we are

ready to proceed. If not, go back

and check your wiring.

Here is the modified program

from last month that includes

snippets from this example (top

right) from Adafruit. (New code is

in bold.)

That’s about it for this month.

Next month we will look at

changing out our regular 1 6x2

display for a 1 6x2 I2C display

(which uses only 2 lines for data

and all control, and 2 lines for

power.) We will also discuss the

different ways of using serial

communication for interfacing

displays and other devices. Until

then, have fun!

from w1thermsensor import W1ThermSensor
from time import sleep
import Adafruit_CharLCD as LCD
Raspberry Pi pin configuration:
lcd_rs = 27
lcd_en = 22
lcd_d4 = 25
lcd_d5 = 24
lcd_d6 = 23
lcd_d7 = 18
lcd_backlight = 4
lcd_columns = 16
lcd_rows = 2
Initialize the LCD using the pins above.
lcd = LCD.Adafruit_CharLCD(lcd_rs, lcd_en, lcd_d4, lcd_d5, lcd_d6, lcd_d7,

lcd_columns, lcd_rows, lcd_backlight)
sensor = W1ThermSensor()
while 1:

temp_in_celsius = sensor.get_temperature()
temp_in_fahrenheit = sensor.get_temperature(W1ThermSensor.DEGREES_F)
print temp_in_fahrenheit
lcd.clear()
lcd.message(str(temp_in_fahrenheit))
print temp_in_celsius
sleep(3)

full circle magazine #1 1 2 1 6 contents ^

HH OOWW--TTOO
Written by Greg D. Walters PPyytthh oonn II nn TThh ee RReeaa ll WWoorrlldd -- PPtt 6699

T his month, we will be using a

1 6x2 LCD display with an i2c

interface to do the same thing that

we did last month (FCM 1 1 1) with

the Dallas Semiconductor DS1 8B20

Temperature sensor. If you

remember, we had to use many I/O

pins on the RPi. This time, thanks

to the i2c display, we will need

only 5 pins (+5v, Gnd, Sensor Data,

SDA (data) and SCL (clock)) to do

the same thing.

Before we get started with our

project, a discussion about i2c is in

order. I have distilled the following

discussion from a wonderful

tutorial by 'SFUPTOWNMAKER' at

Sparkfun.com which can be found

at

https://learn.sparkfun.com/tutorial

s/i2c?_ga=1 .242063243.863781 31 9

.1 463423290

I2C

Inter-Integrated Circuit (i2c)

protocol is intended to allow

multiple "slave" digital ICs to

communicate with one or more

master chips. Like Serial Peripheral

Interface (SPi) , it is intended for

only short distance

communications within a single

device. Like Asynchronous Serial

Interfaces (RS-232 or UARTs), it

requires only two signal wires to

exchange information.

RS232 (ASYNCHRONOUS

COMMUNICATIONS)

No clock data is required on the

lines; however, both sides must

agree on the communications data

rate. Requires hardware overhead

(UART) at each end.

In addition to the 8 data bits, at

least one start and one stop bit are

required for each data frame.

While it is possible to connect

multiple devices on a single serial

port, there are issues with multiple

devices trying to use the two lines

at the same time.

Most UART devices can support

only certain set baud rates, the

usual maximum is 230400 bits per

second.

RX <--------- TX
TX ---------> RX

SPI

The biggest drawback with SPI

is the number of pins required.

Connecting a single master to a

single slave requires four lines,

each additional slave requires one

addition chip select (CS) IO pin to

the master. If you want to use

many sensors/devices connected

to the master, the required number

of pins can quickly overwhelm the

number of available

inputs/outputs.

SPI (see diagram below) is good

for high data rate full-duplex

(simultaneous send/receive of

data). Data rates can be upwards

of 1 0 MHz.

I2C

i2c requires only 2 lines like

async serial, but those two lines

can support up to 1 008 slave

devices. Unlike SPI , i2c can support

a multi-master system – allowing

multiple slave devices to

communicate to multiple master

devices. There is a limitation that

the masters can not communicate

with each other on the i2c bus, and

they must take turns using the bus

lines. i2c has a similar overhead to

Async in that, for each 8 bits of

data, one extra bit is required as an

"Ack/Nack" bit. The hardware

requirements are more complex

than SPI , but less than Async.

Data rates are somewhere

between Async and SPI . Most i2c

devices can communicate at

between 1 00 KHz to 400 KHz.

https://learn.sparkfun.com/tutorials/i2c?_ga=1.242063243.863781319.1463423290

full circle magazine #1 1 2 1 7 contents ^

HOWTO - PYTHON

In the diagram above, SDA is

the data line and SCL is the clock

line.

Hopefully I didn’t completely

confuse you and you are ready to

go ahead with our project.

A very good resource for what

we are about to do is at

http://www.circuitbasics.com/rasp

berry-pi-i2c-lcd-set-up-and-

programming/

Make sure that i2c is enabled on

the RPi. This is set in raspi-config.

Now, in a terminal, use apt-get

to install two support libraries. (I

wasn’t able to get it to work as a

single liner for some reason.) :

sudo apt-get install i2c-
tools

sudo apt-get install python-
smbus

I was able to get Fritzing to

come up with the i2c backpack

(shown top right) .

Hook up the SDA pin of the i2c

backpack to PHYSICAL pin 3 on the

RPi (this is GPIO2) and the SCL on

the backpack to PHYSICAL pin 5

(GPIO3). Pick a free 5v pin on the

RPi (either pin 2 or 4) and a free

ground (pins 6 or 9) and connect

them to the backpack VCC and

Gnd. Don’t forget we need the

temp sensor connected to GPIO4

as last month (along with the

resistor to +5VDC).

Now reboot and once the RPi is

up, in a terminal type:

i2cdetect -y 1

This will verify that the i2c

interface is working on your Pi, and

also tell you what address is used

by the LCD display device. Look at

the screen dump shown right to

see what it should look like.

As you can see, my device is at

3f, but yours might be at a

different address. When you

create the driver below (either

typing directly from the article or

from the pastebin page), you will

need to enter your device address

in line 22.

The first set of code is a library

that will work as a driver for the i2c

LCD. This should be saved as

i2c_lcd_driver.py. The code is on

http://pastebin.com/ueu1 8fNL to

save you typing.

http://www.circuitbasics.com/raspberry-pi-i2c-lcd-set-up-and-programming/
http://pastebin.com/ueu18fNL

full circle magazine #1 1 2 1 8 contents ^

Greg Walters is owner of RainyDay
Solutions, LLC, a consulting company
in Aurora, Colorado, and has been
programming since 1 972. He enjoys
cooking, hiking, music, and spending
time with his family.

HOWTO - PYTHON

Now, we are going to do a short

test to make sure everything

works. Type in the following code

and save it as i2c_test1 .py, into the

same folder as the driver that we

just wrote...

import i2c_lcd_driver
from time import *

mylcd = i2c_lcd_driver.lcd()

mylcd.lcd_display_string("Thi
s is a test",1)

I f everything here is correct,

you should see “This is a test” at

the first character position on the

first line of the LCD display. If it’s

good, we can move forward. The

following code is basically the

same code from last month

modified to use the i2c display

instead of the parallel version.

That pretty much wraps up our

discussion of LCDs and i2c. We will

be using i2c LCDs and other i2c

devices in the future, so you

should keep them safe for later on.

Next month, we will start working

with motors, servos and stepper

motors. So, run out, and get a

hobby motor to be ready. In a few

months, we’ll start working with

the Arduino microcontroller and

then learn to interface the RPi to

control the Arduino.

Until then have fun.

import i2c_lcd_driver
from w1thermsensor import W1ThermSensor
from time import *

mylcd = i2c_lcd_driver.lcd()

#mylcd.lcd_display_string("This is a test",1)

sensor = W1ThermSensor()
#setup_lcd()
while 1:

This is basically the same code as last month, so use
whichever temp type you want.

temp_in_fahrenheit = sensor.get_temperature(W1ThermSensor.DEGREES_F)
Print the temp to the terminal...
print temp_in_fahrenheit
Now print it to the i2c LCD module...
mylcd.lcd_clear()
mylcd.lcd_display_string(str(temp_in_fahrenheit),1)
sleep(3)

full circle magazine #1 1 3 1 5 contents ^

HHOOWW--TTOO
Written by Greg D. Walters PPyytthhoonn II nn TThhee RReeaall WWoorrlldd -- PPtt 7700

T his month, we will be using the
RPi to control a simple DC

Hobby motor. This can be obtained
from most hobby stores,
electronics suppliers, and even
some big box hardware stores.
Here is a “shopping list” of what
we will be needing.

• DC Hobby Motor
• L293D Dual H-Bridge Motor
Driver Chip
• 4 AA (or AAA) Battery Holder and
batteries
• Breadboard
• Male to Male jumpers
• RPi (of course)

Before we start wiring and
coding, we need to talk about a
couple of things.

First, NEVER EVER connect a
motor of any kind directly to the
RPi. You are asking for disaster.
The current requirements can
cause the RPi to “melt down”. The
driver chip is less than $5.00 US
and is a lot cheaper than a $39.00
RPi.

Second, we will discuss the

L293D H-bridge motor driver for a
few moments so you understand
how this device works.

According to wikipedia, “An H
bridge is an electroniccircuit that

enables a voltage to be applied

across a loadin eitherdirection.

These circuits are often usedin

robotics andotherapplications to

allowDCmotors to run forwards

andbackwards.”

Here is a pinout of the driver
chip (“borrowed” from
hardwarefun.com)...

Pins 1 and 9 are enable pins.
Think of these pins as an On/Off
switch. A low state on the enable
pin means the motor is off. A high
state means that the motor CAN
BE on. Let’s look at it as a logic
table or truth table. Pins 1 A and 2A
are one side of the chip and are

control lines like the enable pins.
The same logic applies to 3A and
4A (the other half of the chip) as
well. Pins 1 Y and 2Y are the
outputs to the motor.

The bottom line of the crazy
table above is this.
If you want the motor to turn on
you MUST…
• Have the Enable pin HIGH (pin 1
and/or pin 9)
• AND EITHER 1 A OR 2A HIGH BUT
NOT BOTH (chip pin 2 and pin 7
respectively)

Now that we have decoded the
logic of the magic chip, we can
start to wire our breadboard and
RPi.

WIRING

The Fritzing drawing (next
page, top right) shows our wiring
diagram for this month. Notice
that we are only using one half of
the chip, so we could actually
control two small DC motors
instead of just one. That, however,
will be up to you to experiment
with.

As always, make the wiring
connections to the RPi BEFORE
you power the RPi on. Also double
check your wiring, especially since
we have an external power source.
You might not be happy if
something is on the wrong pin.

This first Fritzing image shows

full circle magazine #1 1 3 1 6 contents ^

HOWTO - PYTHON

the connections to the RPi and to
the breadboard/chip. Basically it
breaks down like that shown in the
table bottom right

The next Fritzing diagram
(below) shows the battery and
motor hook-ups.

We are using the +5 VDC power
from the RPi to power the motor
driver chip (RPi pin 2 to L293D pin
1 6). While the above diagram
shows AAA batteries, you can use a
battery pack that uses AA
batteries as well. We are also
providing Ground from the RPi (pin

full circle magazine #1 1 3 1 7 contents ^

Greg Walters is owner of RainyDay
Solutions, LLC, a consulting company
in Aurora, Colorado, and has been
programming since 1 972. He enjoys
cooking, hiking, music, and spending
time with his family.

HOWTO - PYTHON

6) to the chip (pins 4,5,1 2,1 3) . The
motor is driven on chip pin 3 (1 A)
and pin 5 (2A). The battery
connects to chip pin 8 to provide
the voltage for the motor.

CODE

We will deal with code in two

programs. The first simply turns on
the motor, runs for a few seconds
then stops it. The second is a
modified version of the first that
shows how to reverse the motor.

DCMOTOR1 .PY

This program (below) will

simply turn on the motor in
forward (clockwise) mode and let
it run, then stop it. Basically it just
proves that everything is working
correctly.

DCMOTOR2.PY

In this program (next page), we
set up the GPIO pins just as we did
before, but we are now using PWM
to modulate the speed of the
motor. If you don’t remember
PWM, please refer to Part 64 back
in FCM 1 07.

In the forward mode, the longer
the duty cycle (closer to 1 00)
means the motor will go faster.

In the reverse mode, the
SHORTER the duty cycle (closer to
0) means the motor will go faster.

We speed up the motor by
setting the duty cycle to a LOWER
percentage, let it run for 5
seconds, then stop it, do a
GPIO.cleanup() , then end the
program.

Well, that’s it for this month.
Next month, we will be working
with servos. All you need is a small
inexpensive one with three wires.

We will not be using parts from
this month’s project, but keep
them for future projects.

Until then, have fun.

import RPi.GPIO as GPIO

from time import sleep

GPIO.setmode(GPIO.BCM)
GPIO.setup(23,GPIO.OUT) # 1A
GPIO.setup(24,GPIO.OUT) # 2A
GPIO.setup(25,GPIO.OUT) # Enable
GPIO.output(24,GPIO.LOW)

Set everything up and set 2A to low.

print "Starting motor"
GPIO.output(23,GPIO.HIGH)
GPIO.output(25,GPIO.HIGH)

sleep(5)

Set 1 A to HIGH and Enable to HIGH to start the motor and let it run
for 5 seconds.

print "Stopping motor"
GPIO.output(25,GPIO.LOW)
sleep(2)
GPIO.cleanup()

Stop the motor by setting the Enable to LOW, sleep for 2 seconds,
then run GPIO.cleanup() .

The first part of the program will be used in the next one.

full circle magazine #1 1 3 1 8 contents ^

HOWTO - PYTHON

import RPi.GPIO as GPIO

from time import sleep

GPIO.setmode(GPIO.BCM)
GPIO.setup(23,GPIO.OUT) # 1A
GPIO.setup(24,GPIO.OUT) # 2A
GPIO.setup(25,GPIO.OUT) # Enable
GPIO.output(24,GPIO.LOW)

As I stated earlier, the above code is pretty much the same thing as we started with in dcmotor1 .py.

fwd = GPIO.PWM(23,40)

We are setting pin 23 to be a PWM Output line with 40% duty cycle (on 40% of the time and off 60% of the time.

print "Starting motor"
GPIO.output(25,GPIO.HIGH)
fwd.start(70)
sleep(5)

We start the motor by setting the enable to High and setting the Duty Cycle to 70. The motor will run for 5 seconds.

print "Stopping motor"
GPIO.output(25,GPIO.LOW)
sleep(2)

Now, we stop the motor by setting enable to low.

print "Starting motor in reverse"
rev = GPIO.PWM(24,50)
GPIO.output(23,GPIO.LOW)
GPIO.output(25,GPIO.HIGH)
rev.start(50)
sleep(5)

We now set the motor to reverse (pin 23 to low and starting the PWM duty cycle to 50% and run for 5 seconds…

print "Speeding up the motor..."
rev.ChangeDutyCycle(10) # When reversing the motor, a smaller duty

Cycle means faster.
sleep(5)
print "Stopping motor"
GPIO.output(25,GPIO.LOW)
GPIO.cleanup()

full circle magazine #1 1 4 1 7 contents ^

HHOOWW--TTOO
Written by Greg D. Walters PPyytthhoonn II nn TThhee RReeaall WWoorrlldd -- PPtt 7711

T his month, we are going to

interface a servo motor to our

RPi. This requires only a servo

motor, the Raspberry Pi, the

breadboard, some jumpers, and

the battery pack we used last

month.

A servo motor is simply a motor

that has a control circuit and a

potentiometer to give the control

circuit the position of the output

shaft. MOST servos will rotate the

shaft between 0° and 1 80°. There

are some that go 360° and more,

but they cost a lot. Gears do all the

connections between the motor,

the potentiometer, and the output

shaft. We provide the power

through batteries or another

external power source, and the RPi

will send out the control signals.

Most servos have only three wires,

Positive voltage, Negative voltage

(ground) and Control Signal. Colors

of the wires vary from

manufacture to manufacture, but

the voltage wires should be close

in colour to red and black, and the

control wire is the only one left.

When in doubt, check for a data

sheet from the manufacture.

The control signals are

expected in a very specific

“format”, and we will use PWM

(Pulse Width Modulation) for that.

First, the pulses must come every

20 milliseconds. The width of the

pulse determines where the

output shaft turns to. If the pulse

is 1 ms in width, the motor will

move toward 0°. If the pulse is 1 .5

ms, then the shaft moves toward

90°. If the pulse is 2 ms, the shaft

moves toward 1 80°

THEWIRING

The connections are very simple

this month. The battery pack

powers the motor, so +voltage on

the servo goes to the + voltage rail,

and the negative servo wire goes

to the negative rail. We connect

the negative voltage from the

battery pack (negative rail) to pin 6

of the RPi. GPIO pin 23 (pin 1 6)

goes to the control wire of the

servo.

Now for some math. As we

discussed earlier, the servo

expects a signal every 20 ms in

order to work, and we need to

keep sending those pulses to keep

the output shaft in the position

that we want it in. The GPIO

command to set the Pulse Width

Modulation is

Pwm = GPIO.pwm({RPi
Pin},{Frequency})

We know the pin number (23),

but we need to convert the 20 ms

to Hertz in order to set the pwm

setup command. How do we do

that? It’s simple.

Frequency = 1/time
Frequency = 1/.02 (20ms)
Frequency = 50 Hertz

So now, when we set up our

code, we can set the GPIO.pwm

command to the control pin and

use 50 for our frequency.

Our first program will start

somewhere close to 0° and then

move to close to 90° then move to

full circle magazine #1 1 4 1 8 contents ^

Greg Walters is owner of RainyDay
Solutions, LLC, a consulting company
in Aurora, Colorado, and has been
programming since 1 972. He enjoys
cooking, hiking, music, and spending
time with his family.

HOWTO - PYTHON

close to 1 80°. I keep saying close,

because every servo is a bit

different. We don’t want to set the

DutyCycle to 0 and have it slam to

the limit and potentially damage

the servo, so we will start off with

a low number close to 0 and end

with a number close to 1 2 in order

to start to “dial in” a set of values

that work. For my servo, the

numbers 3 for 0° and 1 2 for 1 80°

worked well.

SERVO1 .PY

import RPi.GPIO as GPIO
from time import sleep

GPIO.setmode(GPIO.BCM)
GPIO.setup(23,GPIO.OUT)

pwm = GPIO.PWM(23,50)
pwm.start(2)
pwm.ChangeDutyCycle(3)
sleep(5)

3 should give you the first

angle. You might need to try

changing it to 2,1 ,0 or 4 to get it

there. Write down this number.

pwm.ChangeDutyCycle(6)

sleep(5)

This should put the rotor into

the centre position (90°) . If you

have changed the first number or

the next number, this will have to

change as well.

pwm.ChangeDutyCycle(12)

sleep(5)

The final number should take

you to the 1 80° position. Again, try

a few numbers one side or the

other to tweak this, and once you

have it, write down the number.

GPIO.cleanup()

Finally we call GPIO.cleanup() to

set everything to normal.

Now comes the heavy duty

math part. We will use the values 3

and 1 2 as y1 and y2 respectively

for the formula. Substitute your

numbers.

Offset = (y2-y1)/(x2-x1)
Offset = (12-3)/(180-0)
Offset = 9/180
Offset = .05

Now when we set the

DutyCycle based on an angle

between 0° and 1 80° we use the

following formula

DutyCycle = (Offset * angle)
+ 2.0

DutyCycle = (.05 * angle) +
2.0

When I did this, it worked, but I

found the value of .061 worked a

little bit better.

Well, that’s about it for this

month. Next time, we will be

working with a stepper motor,

somewhat a cross of both a servo

and a regular motor.

Until then, enjoy!

Servo2.py

import RPi.GPIO as GPIO
from time import sleep
GPIO.setmode(GPIO.BCM)
GPIO.setup(23,GPIO.OUT)
pwm = GPIO.PWM(23,50)
pwm.start(2)
def SetAngle(angle):

DutyCycle=(.061 * angle) + 2.0
print(DutyCycle, angle)
pwm.ChangeDutyCycle(DutyCycle)

try:
while True:

for a in range(0,180):
SetAngle(a)
sleep(.05)

for a in range(180,0,-1):
SetAngle(a)
sleep(.05)

except KeyboardInterrupt:
GPIO.cleanup()

full circle magazine #1 1 5 1 7 contents ^

HHOOWW--TTOO
Written by Greg D. Walters PPyytthhoonn II nn TThhee RReeaall WWoorrlldd -- PPtt 7722

W elcome back for another

entry into what I lovingly

call ‘Greg’s Python Folly’. As

promised, we will be working on

interfacing a stepper motor to the

Raspberry Pi. You will need your

Raspberry Pi, a hobby stepper

motor, a 4 x AA size battery pack,

the L293D driver chip we used

previously, a breadboard, and

some jumpers.

While I was doing research for

this particular project, I stumbled

across a tutorial at tutorials-

raspberrypi.de. I was so impressed

by the information at this website,

I am using the majority of their

information and code in this

article. The website is:

http://tutorials-

raspberrypi.com/how-to-control-a-

stepper-motor-with-raspberry-pi-

and-l293d-uln2003a/. If you get

confused by my explanations, you

can always drop by and maybe get

some clarifications.

The motor I chose is a Radio

Shack mini stepper motor. Basically

it is a 28BJY-48 low-voltage

stepper. Before you try to

interface any stepper motor,

please research the data sheet for

as much information as you can

get. In this case, the data sheet is

located at: http://www.tutorials-

raspberrypi.de/wp-

content/uploads/201 4/08/Stepper-

Motor-28BJY-48-Datasheet.pdf

Now, let’s examine stepper

motors in general, then we’ll

expand that information to the

28BJY specifically and work on

interfacing it to the Pi through our

L293D driver chip.

STEPPER MOTORS

Stepper motors are used in

robotics and in CNC type machines

where you want the ability to move

an item to a specific location easily.

There are two basic types of

stepper motors, one called

Unipolar and one called Bipolar.

The difference will become

obvious as we go through this

tutorial. The 28BJY is a Bipolar

motor and also has a gearing

system.

In both models, there are

multiple electromagnetic coils that

are turned on and off in a

sequence to make the motor turn.

Each time we apply power to one

of the coils, the motor rotates a

small amount (if powered in the

correct sequence for the motor) ,

called a step, hence the name

stepper motor.

UNIPOLAR MOTORS

Unipolar motors have coils that

are powered in only one direction,

hence the UNI in Unipolar. The

rotor of the motor is controlled by

powering the various

electromagnetic coils on and off in

a specific sequence for a certain

amount of time. In a simplified

version of this model, let’s look at

the following diagram…

Turning on each coil one at a

time will cause the magnet in the

rotor to turn toward the proper

coil. Using a clock face as a guide,

turning on the coils in the

sequence of 1 2 o’clock, 3 o’clock, 6

o’clock, 9 o’clock and then again at

1 2 o’clock will cause the rotor to

turn clockwise one full rotation.

This requires 4 “steps” to make one

rotation. This is called the Unipolar

wave. If we go a bit further, we

could make a more granular

movement by alternating the coils

from a single coil turned on and

then turning on the next coil as

well, which makes the rotor turn in

an eighth turn when both coils are

turned on. The sequence would

then be: 1 2, 1 2 and 3, 3, 3 and 6, 6,

6 and 9, 9, 9 and 1 2, and then

finally 1 2 alone again. This then is 8

steps per rotation which is called

half stepping. To make the motor

reverse (counter-clockwise) , we

simply reverse the sequence. This

is a VERY simple representation,

and many stepper motors have a

resolution that can be as high as

200 steps per revolution.

http://tutorials-raspberrypi.com/how-to-control-a-stepper-motor-with-raspberry-pi-and-l293d-uln2003a/
http://www.tutorials-raspberrypi.de/wp-content/uploads/2014/08/Stepper-Motor-28BJY-48-Datasheet.pdf

full circle magazine #1 1 5 1 8 contents ^

HOWTO - PYTHON

BIPOLAR MOTORS

The 28BJY, as I stated earlier, is

a Bipolar motor. In this case, the

coils can have their current

reversed and two coils are

powered at any time. This creates a

situation where the switching is

more complex, but the amount of

turn force (power) of the rotor is

increased. A simple block diagram

of the 28BJY is shown below.

The numbers shown with the

colors of the wires are for the

28BJY and yours may be different.

The wire connector (if there is one)

might differ from unit to unit. You

can use an ohmmeter to verify the

coils.

THE WIRING

A couple of words of warning

on this before we start.

First, do all of your wiring

BEFORE you power on the

Raspberry Pi. We are working with

an external power source, so you

want to make sure that you don’t

short any wires or apply the

battery power to the wrong pin.

Second, BE SURE of your wiring

before you power on your RPi. If

you get the wiring confused, at

best your project will not work and

the motor will just sit there and

buzz.

When you look at the fritzing

drawing, it looks fairly simple (and

it is) . I made sure that the wiring

from the RPi to the driver chip

were the same color as the

intended segment of the motor.

We will be using only 4 of the 5

motor wires. The red one (if yours

has a red one) is not connected for

this project.

Since the central component in

this project is the L293D driver

chip, here is a quick breakdown to

try to make things easier for you...

L293D
Pin 1 -> Pin 9
Pin 2 -> Pi GPIO 6
Pin 3 -> Motor Pink
Pin 4 -> Breadboard Negative
Rail
Pin 5 -> No Connect
Pin 6 -> Motor Orange
Pin 7 -> Pi GPIO 5
Pin 8 -> Breadboard Positive
Rail
Pin 9 -> Pin 1
Pin 10 -> PI GPIO 23
Pin 11 -> Motor Yellow
Pin 12 -> No Connect
Pin 13 -> No Connect
Pin 14 -> Motor Blue
Pin 15 -> Pi GPio 24
Pin 16 -> Pi +5VDC

full circle magazine #1 1 5 1 9 contents ^

HOWTO - PYTHON

I f you follow this, you should

have no problems with the wiring.

THE CODE

As always, I will discuss the

code in blocks. So let’s get started.

import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)
coil_A_1_pin = 6 # pink
coil_A_2_pin = 5 # orange
coil_B_1_pin = 23 # blue
coil_B_2_pin = 24 # yellow

Here we are simply defining the

imports, setting the GPIO mode,

and setting the warnings to False

so we don’t get any nagging

notices about already initialized

pins. We also define which GPIO

pins control the motor coils

through the driver chip.

adjust if different
StepCount = 8
Seq = range(0, StepCount)
Seq[0] = [0,1,0,0]
Seq[1] = [0,1,0,1]
Seq[2] = [0,0,0,1]
Seq[3] = [1,0,0,1]
Seq[4] = [1,0,0,0]
Seq[5] = [1,0,1,0]
Seq[6] = [0,0,1,0]
Seq[7] = [0,1,1,0]

Now this is the key to making

our project work. This motor wants

to have 8 steps (internal) per

revolution of the motor (per the

data sheet). We also define the

sequence of which coil(s) are

energized per step as a series of

lists. Each sequence array explains

which coil(s) is energized at any

given time.

GPIO.setup(coil_A_1_pin,
GPIO.OUT)
GPIO.setup(coil_A_2_pin,
GPIO.OUT)
GPIO.setup(coil_B_1_pin,
GPIO.OUT)
GPIO.setup(coil_B_2_pin,
GPIO.OUT)

Here we are going through the

setup steps, defining each of our

pins used as outputs.

def setStep(w1, w2, w3, w4):

GPIO.output(coil_A_1_pin, w1)

GPIO.output(coil_A_2_pin, w2)

GPIO.output(coil_B_1_pin, w3)

GPIO.output(coil_B_2_pin, w4)

This subroutine is called each

time we want to step the motor

and we pass a 0 or 1 to each coil

wire port on the driver chip to

energize or deenergize the various

coils to turn the rotor.

And finally our “main” routine

which loops over and over again

asking the amount of the time

delay and the number of steps in

that given direction. For my motor,

it takes 51 2 steps to make close to

a full rotation.

On my system, with my motor, a

time delay of 1 ms works well.

However, you might have to add a

few milliseconds to yours for it to

work.

Notice I stated that it takes 51 2

steps to make CLOSE to a full

def forward(delay, steps):
for i in range(steps):

for j in range(StepCount):
setStep(Seq[j][0], Seq[j][1], Seq[j][2], Seq[j][3])
time.sleep(delay)

def backwards(delay, steps):
for i in range(steps):

for j in reversed(range(StepCount)):
setStep(Seq[j][0], Seq[j][1], Seq[j][2], Seq[j][3])
time.sleep(delay)

These two routines allow for easily commanding the motor forwards or backwards a specific number of

steps in the proper direction.

if __name__ == '__main__':
while True:

delay = raw_input("Time Delay (ms)?")
steps = raw_input("How many steps forward? ")
forward(int(delay) / 1000.0, int(steps))
steps = raw_input("How many steps backwards? ")
backwards(int(delay) / 1000.0, int(steps))

full circle magazine #1 1 5 20 contents ^

Greg Walters is owner of RainyDay
Solutions, LLC, a consulting company
in Aurora, Colorado, and has been
programming since 1 972. He enjoys
cooking, hiking, music, and spending
time with his family.

HOWTO - PYTHON

rotation. This motor has a 64:1

gearing ratio, which leaves a rather

ugly fractional step angle. But for

the purposes of this tutorial, it

works pretty well.

If you want to learn more about

stepper motors, adafruit.com has a

very nice article on the subject.

Hopefully you have enjoyed the

series so far. Next up will be

learning to use the Arduino

microcontroller board. We’ll use

this information in the third

section of the series where we

control the Arduino with a

Raspberry Pi (or other computer) .

So, that having been said, you

should be ready and have an

Arduino (Uno or Mega) ready and

dust off the components we used

in the early part of this series for

next time.

Until then, keep learning and

above all, HAVE FUN!

THE OFFICIAL FULL CIRCLE APP FOR UBUNTU TOUCH

B rian Douglass has created a

fantastic app for Ubuntu Touch

devices that will allow you to view

current issues, and back issues, and

to download and view them on your

Ubuntu Touch phone/tablet.

INSTALL

Either search for 'full circle' in the

Ubuntu Touch store and click

install, or view the URL below on

your device and click install to be

taken to the store page.

https://uappexplorer.com/app/

fullcircle.bhdouglass

https://uappexplorer.com/app/fullcircle.bhdouglass

29 contents ^

HHOOWW TTOO CCOONNTTRRIIBBUUTTEE
Ful l Circle Team

Edit or - Ronnie Tucker

ronnie@fullcirclemagazine.org

Webmast er - Lucas Westermann

admin@fullcirclemagazine.org

Edit ing & Proof reading

Mike Kennedy, Gord Campbell, Robert

Orsino, Josh Hertel, Bert Jerred, Jim

Dyer and Emily Gonyer

Our thanks go to Canonical, the many

t ranslat ion teams around the world

and Thorst en Wilms for the FCM logo.

FULL CIRCLE NEEDS YOU!
A magazine isn't a magazine without art icles and Full Circle is no

except ion. We need your opinions, desktops, stories, how-to's,

reviews, and anything else you want to tell your fellow *buntu users.

Send your art icles to: art icles@fullcirclemagazine.org

We are always looking for new art icles to include in Full Circle. For help and advice

please see the Of f icial Ful l Circle St yle Guide: ht tp:/ /url.fullcirclemagazine.org/75d471

Send your comment s or Linux experiences to: let ters@fullcirclemagazine.org

Hardware/sof tware reviews should be sent to: reviews@fullcirclemagazine.org

Quest ions for Q&A should go to: quest ions@fullcirclemagazine.org

Deskt op screens should be emailed to: misc@fullcirclemagazine.org

... or you can visit our sit e via: fullcirclemagazine.org

Please note:
Special editions are

compiled from originals

and may not work with

current versions.

EPUB Format - Most edit ions have a link to the epub f ile

on that issues download page. If you have any problems

with the epub f ile, email: mobile@fullcirclemagazine.org

Issuu - You can read Full Circle online via Issuu:

ht tp:/ / issuu.com/fullcirclemagazine. Please share and rate

FCM as it helps to spread the word about FCM and Ubuntu.

Magzst er - You can also read Full Circle online via

Magzster: ht tp:/ /www.magzter.com/publishers/Full-Circle.

Please share and rate FCM as it helps to spread the word

about FCM and Ubuntu Linux.

Get t ing Ful l Circle Magazine:

For t he Ful l Circle Weekly News:

You can keep up to date with the Weekly News using the RSS

feed: ht tp:/ / fullcirclemagazine.org/ feed/podcast

Or, if your out and about , you can get the Weekly News via

St itcher Radio (Android/ iOS/web):

ht tp:/ /www.st itcher.com/s?f id=85347&ref id=stpr

and via TuneIn at : ht tp:/ / t unein.com/radio/Full-Circle-Weekly-

News-p855064/

Special Editions - Jonathan Hoskin

