
THE INDEPENDENT MAGAZINE FOR THE UBUNTU LINUX COMMUNITY

PROGRAMMING SERIES SPECIAL EDITION

  

  

In the Real WorldIn the Real World

 Volume  Volume ElevenEleven  
    Parts Parts 60 - 6660 - 66 

Full Circle

Full Circle Magazine is neither ailiated, with nor endorsed by, Canonical Ltd.

PYTHONPYTHON



full circle magazine #1 02 1 3 contents ^

HH OOWW--TTOO
Written by Greg D. Walters PPyytthh oonn II nn TThh ee RREEAALL WWoorrlldd

W elcome fellow pythoners. As

the kids here in the central

parts of the U.S. say, “What’s

Shakin’ Bacon?” I ’m not exactly

sure what that’s supposed to

mean, but I assume it’s a good

thing.

You might notice the new

header. I decided that I ’ve taught

you all the basics of Python that I

can for “general” programming, so

now we are going to delve into

using Python to talk to other types

of computers and controllers, like

the Raspberry Pi and the Arduino

micro controller. We’ll look at

things like temperature sensors,

controlling motors, flashing LEDs

and more.

This issue we will be focusing

on what we’ll need to do this and

focus on a few of the projects we

will be looking at in the future.

Next issue, we will start the first

project.

One of the things we will talk

about next time will be the

Raspberry Pi. The Pi is a credit-card

sized computer that natively runs

Linux on an SD card. Its output

goes to your TV set via HDMI. It

also has an Ethernet connection

for Internet access.

You can find out more at the

official site

https://www.raspberrypi.org. If

you want to follow along with the

projects, you will need a Pi, SD

card, Keyboard, Mouse, a 5volt DC

power supply like the ones on

modern cell phones, and access to

an HDMI monitor or TV. Eventually,

you should also consider getting a

breadboard and some connecting

wires for when we start to

interface to the outside world. You

can find any number of places that

sell the Pi on the Internet. Here in

the U.S., we can get them for

around $35.

One other thing about the Pi is

that it provides access to a series

of pins that support GPIO (General

Purpose Input/Output). Basically,

this means that you can write

programs that will send signals to

the output pins and read the

signals from the input pins. This

can be used to interface to things

like LEDs, sensors, push buttons,

etc. Many people have made home

automation systems, multiple

processor systems (by linking 40 or

so Pi computers together to

emulate a supercomputer) ,

weather stations, even drones. So

you can imagine that the

possibilities are endless. That’s

why I decided to start with it for

this series of articles.

After a while, we will begin to

work with the Arduino, which

according to the official website

(https://www.arduino.cc) : “Arduino

is an open-source electronics

platform basedon easy-to-use

hardware andsoftware. It's

intendedforanyonemaking

interactive projects”.

Once again, this is an exciting

device to work with. In this part of

the series, we will look at talking to

the Arduino, first in its native

scripting language, and then in

Python and eventually interfacing

the Pi with the Arduino.

I know this month’s article is

fairly short, but I ’ve been doing

poorly health-wise, so I ’m saving

my strength for the next article.

Until then, grab some electronics

and get ready for fun!

Greg Walters is owner of RainyDay
Solutions, LLC, a consulting company
in Aurora, Colorado, and has been
programming since 1 972. He enjoys
cooking, hiking, music, and spending
time with his family. His website is
www.thedesignatedgeek.net.

http://www.thedesignatedgeek.net
https://www.raspberrypi.org
https://www.arduino.cc


full circle magazine #1 03 1 2 contents ^

HHOOWW--TTOO
Written by Greg D. Walters PPyytthhoonn II nn TThhee RREEAALL WWoorrlldd

W elcome back to the new

direction of my Python

series. In case you missed last

month, I am changing the direction

of this 5 year series from teaching

programming in Python to what is

called Physical Computing using

Python. When you see the phrase

'Physical Computing', think of

buttons, LEDs, motors, sensors

(temperature, humidity, motion

sensors, barometric sensors, etc.)

and more. The reason I decided to

do this was that after 5 years, I

thought I had shown pretty much

everything that you needed for

“normal” computing, so let’s focus

on what I consider the future of

small computer programming and

microcontrollers.

This month, I will be going over

selecting a Raspberry Pi (yes there

are more) that will fit your goals,

installing an operating system

onto the SD card and starting the

RPi for the first time with the new

OS.

Next month, we will start

learning to respond to switches

and control LEDs. In future

articles, we will be interfacing with

sensors and the Arduino micro-

controller.

A BRIEF HISTORY OF THE RPI

Much of this information comes

from the official Raspberry Pi

website

(http://www.raspberypi.org) and

my memory of buying my first RPi.

When the Raspberry Pi first came

out, there were two models –

Model A+ and Model B+. The

decision tree was fairly easy since

the two different versions fit a

“simple or full feature” mindset, as

you can see in the gross details

presented below (They are now

called RPi 1 Models)…

In February 201 5, both of those

models were superseded by the

RPi 2 Model B. It shares a good

deal with the RPi 1 B+, but has a

900 MHZ Quad-core ARM Cortex-

A7 CPI and 1 GB Ram.

You can find various models of

the RPi at any number of web

retailers. My humble suggestion is

to get the RPi 2 Model B if you can

afford the difference in the price

between the P1 Model B (it

shouldn’t be that much of a delta) .

Any of the code that we create in

the next few articles should easily

work with any version of the RPi.

While you are searching the

web for your RPi, you will see

various kits and add-on modules

like cameras, servo controllers,

motor controllers and so on. At

this point, the add-ons won’t be

needed, but we might use some in

the future, so if it is something

that you are interested in use your

own judgment. As to the kits, here

are some things you should

consider before you invest in the

“ultimate kits”. In the next few

articles, we will need :

• A Raspberry Pi computer.

• A power supply. For the P1

versions, a 5 VDC 1 -1 .2 amp cell

phone charger with a micro USB

connection (normal for many smart

phones today) will work well. For

the P2 version, I strongly suggest

that you get a power supply that

has an output of 5 VDC 2.5 amp

power supply with a micro USB

connector.

• A USB Keyboard and Mouse.

While many places offer very small

keyboard/mouse combos, for

programming work and “normal”

computer use, you will want a full

size version of both. You can move

to the small wireless versions later

on if you decide to use the RPi for

http://www.raspberypi.org


full circle magazine #1 03 1 3 contents ^

HOWTO - PYTHON

other uses like a multimedia centre

or expanded home automation.

Normally when I work with the Pi, I

use a VNC server on the Pi and a

VNC client on my linux machine, so

I don't have to have multiple

keyboards and mice on the top of

my desk.

• A 4-8 GB SD Card that is Class 1 0.

Versions P1 A and B used SD cards.

P1 Model B+ and above have

switched over to a Micro-SD card

only support. Keep this in mind

when buying a specific version. Of

course you can use a bigger card.

Officially they say that testing has

been done with 32 GB cards and

don’t see many issues with most of

the larger cards. Please Be careful

when buying SD cards, since they

are not all created equal. Just

because a cheap card is marked

“Class 1 0” doesn’t actually mean

that it is going to work like a more

expensive card.

• Some sort of Internet connection,

either USB Dongle or Ethernet

cable.

• A HDMI monitor/television for

output and HDMI cable. If HDMI is

not available, the P1 A and B

versions provide a RCA Composite

Video out and 3.5mm Audio Out

connector. The P1 B+ version and

later have done away with the RCA

Composite Video connector and

has replaced it with a 3.5mm jack

that combines audio and video in

one. You would need a 3.5 mm to

3 RCA connectors to connect to an

older TV.

• Speakers or headphones (unless

the monitor or device you are

using supports HDMI audio).

While this is the “minimum”

requirement list for this article, for

our first project you SHOULD have

the following items available…

• Breadboard – The breadboard

will be needed to start working

with add on discrete components

like LEDs, resistors, switches, etc.

without having to do any

soldering.

• GPIO interface board (header)

and Ribbon cable. This will

connect the GPIO pins from the

RPi to the breadboard. Check out

http://sparkfun.com or

http://www.Adafruit.com for this

item. The item you will want to

look at from Adafruit is called “Pi

T-Cobbler Plus”. Note that this

particular item will NOT work with

the RPi V1 A or B. It will only work

with the later versions. It is

currently about $8.00 U.S.. If you

are using a model A or B, you

should get “Pi T-Cobbler” which is

about $7.00 U.S. If you are looking

at SparkFun, their item is called the

“Pi Wedge”. Unless you want to

assemble your own (read this as

soldering tiny parts) , you will want

to get the Preassembled version.

This one costs about $1 0.00 U.S.. I

believe that they have retired

(discontinued) the version for the

RPi 1 A and 1 B. You CAN elect not

to get the interface board and

ribbon cable and use female (Pi

side) to male (breadboard side)

jumpers. These will work,

however, in some of the things we

do later on, if you get the jumper

on the wrong pin of the Pi, it could

lead to damage to your Pi.

• Various Resistors, LEDs and Mini

pushbutton switches. I will give

you a list before we need them to

give you plenty of time to obtain

them. You can get these at many

places.

• One other thing you might

consider is a case, but only if you

have the breakout boards and

ribbon cables. This will protect

your Pi from your handling of it.

SETUP OF YOUR RPI

Now comes what must be for

me, the most tedious part of the

project… the setup. The steps we

will perform are:

• Download the OS image.

• Unpack the image file from the

archive file. Put it somewhere it's

easy to get to.

• Installing OS to the SD Card.

• Getting the RPi hooked up.

• First boot of the RPi with the new

OS.

So, let’s get the OS image. Go

to the downloads page on the

official Raspberry Pi website

(https://www.raspberrypi.org/dow

nloads). You will be presented

multiple versions of various images

that you can download, including 2

versions of Ubuntu (The GUI

version is Ubuntu Mate), Windows

1 0 IOT and more. If you have an

older model (original models A or

B), neither of the Ubuntu images

or the Windows image will run on

these models. You need the

ARMV7 processor and the extra

memory to be able to use these

images.

The two we are interested in

for this project, are the NOOBS

and the RASPBIAN images. I will

be using the RASPBIAN Wheezy

image dated 05-05-201 5 for our

first few projects, but if you want

to have the option of booting into

other OS images on the same card,

http://sparkfun.com
http://www.Adafruit.com


full circle magazine #1 03 1 4 contents ^

HOWTO - PYTHON

feel free to download the NOOBS

image. Just remember, if you have

more than one OS on the card, you

have less space available to the

RASPBIAN image and you will run

into an issue that I always used to,

not enough space for all the things

you want to try. Assuming that

you are doing your work on a Linux

machine, you can see the official

installation instructions at

https://www.raspberrypi.org/docu

mentation/installation/installing-

images/linux.md . If you are using

a Windows machine or a Mac,

follow the links there. I ’m going to

assume a Linux machine and will

give you the instructions here.

Before we get started, you

might be asking why, if there is a

newer/better version available, am

I using the older version. I ’ve had

some trouble with the ‘Jessie’

release and am more comfortable

with the ‘Wheezy’ release at this

time. I doubt that this was an issue

with the release, probably just a

bad download, but I just wanted to

let you know. For the purpose of

the next few articles, use ‘Wheezy’

and feel free to play with other

versions.

Unpack the archive and have it

be sent to a folder that will be easy

for you to remember.

INSTALLING THE OS IMAGE
TO THE SD CARD

I f you are using an early version

of the Pi, you will be using a

standard sized SD card. If you are

using a later version you will be

using a Micro-SD card. To save me

having to type the distinction

every time, I will use “SD” in the

documentation. One more thing

before we start. I STRONGLY

SUGGEST that you do not use a

device connected to an external

USB hub for the imaging of the SD

card. I know the specs say you can,

but I 've never had very good luck

doing this.

OK, here we go. Before

inserting the SD card into your

Linux box, open a terminal and do:

sudo -i

Most of the commands don't

actually need the sudo level

permissions, but it won't hurt and

neither you or I have to remember

when they do. Now run “df -h” to

see what devices are currently

mounted in the system. My system

responds as shown below. Yes, I 've

named my machine Slartibartfast.

Slartibartfast ~ # df -h
Filesystem Size Used Avail Use% Mounted on
/dev/sda1 451G 336G 93G 79% /
none 4.0K 0 4.0K 0% /sys/fs/cgroup
udev 3.9G 4.0K 3.9G 1% /dev
tmpfs 796M 1.5M 794M 1% /run
none 5.0M 0 5.0M 0% /run/lock
none 3.9G 124M 3.8G 4% /run/shm
none 100M 32K 100M 1% /run/user
/dev/sdd1 2.8T 2.5T 314G 89% /media/greg/TOSHIBA
EXT
/dev/sdb1 1.8T 1.5T 294G 84% /media/greg/extramedia
/dev/sdc1 917G 681G 190G 79% /media/greg/MoreMedia2
Slartibartfast ~ #

Notice that I have 4 drives (sda1 , sdb1 , sdc1 and sdd1 ) . I hope that when

I plug in the SD card, it will come up as /dev/sde1 . This will be important

to know because if we get the wrong /dev/ device, we will corrupt it!

Now plug your SD card into the computer and run “df-h” again. My

system responds as:

Slartibartfast - # df-h
Filesystem Size Used Avail Use% Mounted on
/dev/sda1 451G 336G 93G 79% /
none 4.0K 0 4.0K 0% /sys/fs/cgroup
udev 3.9G 4.0K 3.9G 1% /dev
tmpfs 796M 1.5M 794M 1% /run
none 5.0M 0 5.0M 0% /run/lock
none 3.9G 124M 3.8G 4% /run/shm
none 100M 36K 100M 1% /run/user
/dev/sdd1 2.8T 2.5T 314G 89% /media/greg/TOSHIBA
EXT
/dev/sdb1 1.8T 1.5T 294G 84% /media/greg/extramedia
/dev/sdc1 917G 681G 190G 79% /media/greg/MoreMedia2
/dev/sde1 56M 20M 37M 36% /media/greg/boot
/dev/sde2 30G 3.0G 25G 11% /media/greg/13d368bf-
6dbf-4751-8ba1-88bed06bef77
Slartibartfast - #

https://www.raspberrypi.org/documentation/installation/installing-images/linux.md


full circle magazine #1 03 1 5 contents ^

HOWTO - PYTHON

Thank goodness! However

/dev/sde1 has two partitions. This

will be important in the next step.

If you are me, please write down

the drive information so you don't

make a mistake. Now you will want

to unmount the SD card drive.

Slartibartfast ~ # umount
/dev/sde2

Slartibartfast ~ # umount
/dev/sde1

Slartibartfast ~ # df -h

Notice that I started yet

another “df -h” just to verify that

the device is unmounted.

If you have ever used this SD

card for anything before, you will

want to remove the partitions

before proceeding further. Some

people might argue that this is not

necessary, but why not? It only

takes a few seconds and it keeps

us from having problems. Use

“gparted” to remove all the

partitions.

We are about to write the

Raspbian image to the SD card.

There are two ways to do this.

First is to use the “dd” command

AS SUDO, which I 'm sure will be

the first thing that comes to

everyone's mind. However,

remember when we use “dd”, we

don't get any information coming

back to tell us what is going on and

if it takes 5 minutes or longer to

write the image, we won't see

anything that entire time in the

way of progress. While there are

other methods I 'm going to

suggest that instead, you can use

the “dcfldd” command (shown top

right) . Once it gets started (which

could take a minute or so) it will

give a progress report about how

much has been written. Pick your

“weapon” of choice. I 'm going to

show “dcfldd”. Now, as SUDO,

please change to where ever you

have unpacked the image you are

going to use.

I show (below) an “ls” command

here. I do this so I can remember

the name of the file that I 'm just

about to work with, and I have the

exact spelling.

On my machine, the process

took about 1 0 minutes total.

This next step (above) is totally

optional, but if you are like me, you

want to verify the write so that

you can be sure that this matches

the image. We will make an image

of the SD card we just did and

write it to a temporary image file

back to the hard drive. Since your

SD card will likely be bigger than

the one they used to create the

distribution image, we will need to

truncate our copy to match the

size of the original and finally use

diff to verify that both images are

the same. Remember this could

take a rather long time if you have

a card larger than about 8Gb. I 'm

using a 32Gb card and it looks like

it's going to take probably 30+

minutes to copy the image to the

drive.

Slartibartfast Raspbian # ls -al
total 7424016
drwxr-xr-x 2 greg greg 4096 Oct 31 12:02 .
drwxr-xr-x 3 greg greg 4096 Oct 23 20:11 ..
-rw-r--r-- 1 greg greg 3276800000 May 7 2015 2015-05-05-raspbian-wheezy.img
-rw-r--r-- 1 greg greg 4325376000 Sep 24 16:14 2015-09-24-raspbian-jessie.img
Slartibartfast Raspbian #

Slartibartfast Raspbian # dcfldd bs=4M if=2015-05-05-raspbian-wheezy.img of=/dev/sde
768 blocks (3072Mb) written.
781+1 records in
781+1 records out
Slartibartfast Raspbian #

Slartibartfast Raspbian # dd bs=4M if=/dev/sde of=wheezy-
2015-11-07.imgsafe
7609+1 records in
7609+1 records out
31914983424 bytes (32 GB) copied, 1675.51 s, 19.0 MB/s
Slartibartfast Raspbian # truncate --reference 2015-05-05-
raspbian-wheezy.img wheezy-2015-11-07.imgsafe
Slartibartfast Raspbian # diff -s wheezy-2015-11-07.imgsafe
2015-05-05-raspbian-wheezy.img
Files wheezy-2015-11-07.imgsafe and 2015-05-05-raspbian-
wheezy.img are identical



full circle magazine #1 03 1 6 contents ^

HOWTO - PYTHON

As you can see, the images are

the same, so if there is anything

wrong from here until we log in,

it's not our fault. This process

could be a useful process as you go

along and want to make a backup

image of your Pi's “drive”, just in

case something happens.

Finally, we want to run the sync

command which will make sure

that anything remains

uncommitted in the write cache is

flushed and that is ok to unmount

the SD card.

Now we can move on to some

more “exciting” things. Powering

on the Pi.

GETTING READY TO POWER

UP YOUR RPI

Notice how I worded the

heading for this portion of the

instructions. There are certain

things you should do before you

apply power to your RPi. There are

possibilities you can damage your

RPi if you don't do the steps in

order.

Plug in the Keyboard and

Mouse into the USB port/ports.

Plug in the Ethernet cable into

the Ethernet port or Wireless

dongle into the USB Port.

Switch on your monitor or TV

and get it set to the proper mode

(HDMI or Composite).

Plug in the video cable (HDMI

or Composite) .

Put the SD card (or Micro-SD

card) into place. It doesn't matter

if you are using a full size SD card

or a Micro-SD, you will insert it

with the label facing down, not up

towards the bottom of the Pi. And

whatever you do, DO NOT remove

the SD card while the RPi is

powered on.

At this point, we are ready to

plug in the power, so take a deep

breath and cross your body parts.

Plug it in.

If it worked, then we'll move on.

If not, please retry the instructions

above.

Once you get Pi booted into a

distribution for the first time, you

will presented with the raspi-

config application. We are going

to want to tweak some of the

settings. We only really need to do

this once.

You will see a screen with 9

options on it. We will work with

numbers 1 ,3 and 4.

• Option #1 - Asks about

expanding the file-system. You

really want to do this so you can

get the most space you can. It will

take effect at the next reboot.

• Option #3 - Enable boot to

Desktop/Scratch. You should go

ahead and set this to Desktop

Login as User 'Pi' at the Graphical

Desktop.

• Option #4 – This sets various

things that we take for granted by

our automated setup systems.

They include Locale, Timezone and

Keyboard Layouts.

• First select Locale. Since this

computer comes from the UK, its

default is to select things that

someone living there would need.

I , on the other hand, need to

change some settings. I have to

let the window scroll down to

EN_US.UTF-8 UTF-8 and select it.

Follow the prompts and you'll be

fine.

• Next I need to set my time-

zone. Since I live in Colorado, USA, I

would select America under the

Geographic area, and Denver for

the Time Zone.

• Finally I have to select the

keyboard layout I wish to use. It

asks a lot of questions, so I would

select “Generic”, “US”, “US”,

“Default”, ”No Compose Key” and

“No” to Xserver Termination key.

Finally I 'm ready to set it up, so I

select “Finish” and “yes”. Your Pi

should reboot and you should see

the normal desktop. Now we want

to update the system to the latest,

add a couple of applications that

we'll need right away and then let

it reboot once again.

Open a terminal off the top

menu bar and do:

sudo apt-get update

sudo apt-get dist-upgrade

Now we want to install

TightVNCServer. While this is an

optional step, I find it much more

constructive to use the Remote

window on my Linux desktop than

be forced to have 2 monitors,

keyboards and mice. It always gets

me confused about what/where I

am.

sudo apt-get install
tightvncserver

Once that's set up, it will ask

you to create a password, so no



full circle magazine #1 03 1 7 contents ^

Greg Walters is owner of RainyDay
Solutions, LLC, a consulting company
in Aurora, Colorado, and has been
programming since 1 972. He enjoys
cooking, hiking, music, and spending
time with his family. His website is
www.thedesignatedgeek.net.

HOWTO - PYTHON

one can just jump into your screen.

Make it easy for you to remember.

The very next thing we want to

do is set the tightvncserver to

automatically startup on boot.

That way we don't have to have a

mouse or a keyboard.

• Change to the home directory if

you aren't already there.
$ cd /home/pi

• Next, change to the .config

directory.
$ cd .config

• Now we will make a new

directory here called 'autostart' .
$ mkdir autostart

• Change to the autostart directory

we just created.
$ cd autostart

• Now create a new configuration

file. $ nano tightvnc.desktop

And enter the following lines:
[Desktop Entry]
Type=Application
Name=TightVNC
Exec=vncserver :1
StartupNotify=false

• Save the file (^O) and exit (^X).

Almost done now. The last

thing we will need to do is install

the IDE we will be using for our

code development, which is Geany.

sudo apt-get install geany

Move over to your normal

computer and load VNCViewer

software on it. Once that's all

done, you will probably want to

spend a moment or two by

rebooting the computer and

making sure that the VNC really

did start up and connect. If

everything works, you are done.

You will need (as I said earlier) a

few things for next month. Some

male to male jumpers, female to

female jumpers, the breadboard,

interface and cable and a handful

of things from the electronics

store…

• Some small LEDs. Try to get

around 1 0 of each Red, Green,

Yellow and Clear.

• Some small ¼ watt resistors. 220

ohm, 4.7K ohm, 1 0K ohm, and

some other “normal” hobbyist

resistors. About 1 0 each will do

you and the salesperson at the

local shop should be able to get

you what you need.

• A couple of small switches (spst)

that will fit on the breadboard.

(usually comes with 4 pins) .

Really that's about all you will

need for the next article. In the

meantime, enjoy playing with Linux

on the Pi. I think you will be

surprised by the power of this tiny

device.

So until next month, the last

thought I will leave you with is

something we hear here in the U.S.

all the time...

“Butwait… there'smore!!!!!!!”

The Ubuntu Podcast covers all

the latest news and issues facing

Ubuntu Linux users and Free

Software fans in general. The

show appeals to the newest user

and the oldest coder. Our

discussions cover the

development of Ubuntu but

aren’t overly technical. We are

lucky enough to have some

great guests on the show, telling

us first hand about the latest

exciting developments they are

working on, in a way that we can

all understand! We also talk

about the Ubuntu community

and what it gets up to.

The show is presented by

members of the UK’s Ubuntu

Linux community. Because it is

covered by the Ubuntu Code of

Conduct it is suitable for all.

The show is broadcast live every

fortnight on a Tuesday evening

(British time) and is available for

download the following day.

podcast.ubuntu-uk.org

http://www.thedesignatedgeek.net
http://podcast.ubuntu-uk.org/


full circle magazine #1 04 1 1 contents ^

HHOOWW--TTOO
Written by Greg D. Walters PPrrooggrraammmmiinngg II nn PPyytthhoonn PPtt .. 6622

B y the time you read this, it will

probably be old news that

there is a new Raspberry Pi that

was released on November 26,

201 5. It's called the Raspberry Pi

Zero and the price is an

unbelievable $5 U.S. or 4! . I

haven't had a chance to find any

actual dimensions, but they say it

is about the size of a stick of gum.

So if you've been holding off

getting your new Pi due to cost,

now you don't have an excuse. We

will discuss the Pi Zero in future

articles.

Now back to my Physical

Programming series. This time we

are going to start actually

controlling things. Hopefully, you

have been able to procure some

LEDs, resistors, switches, jumpers

and a breadboard.

As we go through the series, I

will be using a free design tool

called Fritzing to provide a visual

representation of what the project

wiring should look like.

You might want to get yourself

a copy from their website

(http://fritzing.org/home/). Not

only can you keep copies of our

projects locally, you also can have

some fun designing your own

circuits.

A QUICK DISCUSSION OF
OUR COMPONENTS

One more thing before we get

started, which is a quick discussion

on some of the electronic

components we will be using this

time, Resistors, LEDs and Switches.

RESISTORS

A resistor is a device that

'resists' the flow of electricity to a

given extent. This will allow us to

limit the amount of electricity that

flows through a circuit or part of

one. In the case of the LED

projects, we will be using resistors

so that they will reduce the

amount of electricity flowing

through the LED (and the GPIO

pin) , to keep it from burning out.

For a more detailed discussion

of resistors, please see:

https://learn.sparkfun.com/tutorial

s/resistors.

LEDS

LEDs are Light Emitting Diodes

and are the “standard”

replacements for bulbs in just

about everything. With a little care

in design, they will last almost

forever. An LED has two

leads/wires called Anode and

Cathode. The Anode is the positive

http://fritzing.org/home/
https://learn.sparkfun.com/tutorials/resistors


full circle magazine #1 04 1 2 contents ^

HOWTO - PYTHON

side and the Cathode is the

negative side.

If you have a new LED directly

out of the package, you will notice

that one of the leads is longer than

the other. That is the Anode or the

positive side. If both leads on a

new device are the same length (or

if you are recycling parts from an

old circuit board), look for the flat

edge. That will always show the

Cathode or negative lead.

SWITCHES

The switch I chose to use for

this project is one that easily

mounts in the breadboard or on a

circuit board. It is simply square

with a small round momentary

button on the top. It also has 4

pins. The trick is to know which

two pins of the four will be the

ones we need. You could take an

ohm-meter and run across all the

combinations of pins until you find

the set that works, or you could

just look at the layout of the pins

that connect it to the breadboard.

The two pins to be used have the

leads that grip into the board

pointing at each other. You only

need one set of pins, so just pick

the set you wish.

OUR FIRST PROJECT...

Now let's get started with our

first construction project. It's a

very simple electronics version of

“hello world”. We will connect a

switch to one of the GPIO pins and

monitor it to catch the press of the

button.

Shown right is the actual

schematic that we will be working

with.

So we have a switch that is

connected between ground pin

and GPIO pin 1 7 which is physical

pin 1 1 . We also have an LED

connected with its cathode to

GPIO pin 1 8 (physical pin 1 2) and

its anode connected to a resistor

that connects to the 3.3volt pin on

the Pi. It is at this point that you

need to make a decision. Will you

reference the pins by their position

on the board, or the GPIO

numbers. We'll get back to that in

a minute. In the meantime, here's

the wiring diagram…

You can see on the breadboard

the three components...the switch,

the LED and the resistor. The first

pin on the RPi is the one on the top

right. That pin provides the 3.3



full circle magazine #1 04 1 3 contents ^

HOWTO - PYTHON

volts DC that we need to power

our project. The pin below it is

counted as pin #2. Pin #6 is a

ground pin. Note that both of

those pins have wire connectors

that go to the long horizontal

buses on the breadboard. Some

breadboards have a “+” and “-” on

the power bus to help you

remember which bus is which. I

also have a long jumper from the

positive 3.3 volt bus at the top of

the breadboard down to the bus

on the bottom. It really doesn't

matter which bus on the

breadboard you use for your

power, as long as you are

consistent.

There is a short jumper going

from the top ground bus to one

side of the switch and the other

side of the switch connects to

physical pin 1 1 on the RPi (or GPIO

pin 1 7). As for the LED, the

Cathode is connected to the

physical pin 1 2 on the RPi (GPIO

1 8) and the Anode is connected to

the resistor, which in turn is

connected to the lower 3.3 volt

bus. Also notice that the wiring is

colour coded. Red will ALWAYS (in

my diagrams) be a positive voltage,

Black is for ground. Any other

colors will mean interconnections

for data.

If you have been keeping up so

far, you will notice that I am giving

both the physical pin number as

well as the BCM GPIO pin number.

The “BCM” stands for Broadcom,

and, in our code, we will have to

tell the RPi.GPIO library if we are

using board numbering or BCM

numbering. This is the decision I

was referring to earlier. In our

code, we will have to be consistent

with one numbering scheme or the

other. In the code we are about to

look at, I provide both, and you can

comment out whichever one you

don't want to use. My personal

preference is to use the BCM GPIO

numbers, but for this project, I will

stick with the physical board pin

numbers. Now let's get into the

code.

As always, I will break the code

into parts and discuss each one.

First (top right) we have to import

the RPi.GPIO library, and we will

alias it to the name “GPIO” to make

things easier to type. Next, we

define two variables; LedPin and

BtnPin to the pin numbering

scheme we wish to use. Here, I 've

decided to use the Physical pin

numbering, since you probably

don't have a breakout wedge yet.

I 've found the one from SparkFun

to be very nice, but it gives you

only the BCM numbers on the pins.

Our next bit of code (shown

below) will be a function called

“setup”, where we set up the

information for the library to use.

Notice that the first line is

commented out since I will be

using the board numbering in this

example, but it's there to show you

how to make the call.

Lines 3 and 4 show how to

define what the pins will be, either

input or output, and if we use the

internal pull up resistors built-in on

the RPi or not. So basically this

portion of the code says to use

physical board pin numbers as

references, and it defines the

Output pin to drive the LED and

the pin that the signal from the

button will be coming in on. Also

notice that we define the pin for

the button to have a pull-up

resistor. This means that the

signal-line will be at 3.3 volts and

when the button is pressed it is

pulled down to ground.

Our next function (following

page, top right) is called loop, and,

as the name suggests, we simply

do a loop, checking the button

input pin to see if it has been

pulled low. If it has, then we turn

the LED on, otherwise we set the

LedPin to high. That might sound

counter-intuitive, but remember

import RPi.GPIO as GPIO

# If you are using the BCM GPIO pin numbers...
#LedPin = 18
#BtnPin = 17
# Otherwise the physical board numbers...
LedPin = 12
BtnPin = 11

def setup():
#GPIO.setmode(GPIO.BCM)
GPIO.setmode(GPIO.BOARD)
GPIO.setup(LedPin, GPIO.OUT)
GPIO.setup(BtnPin, GPIO.IN,pull_up_down=GPIO.PUD_UP)



full circle magazine #1 04 1 4 contents ^

Greg Walters is owner of RainyDay
Solutions, LLC, a consulting company
in Aurora, Colorado, and has been
programming since 1 972. He enjoys
cooking, hiking, music, and spending
time with his family. His website is
www.thedesignatedgeek.net.

HOWTO - PYTHON

we have the Anode connected to

the 3.3 volt bus through the

resistor. This means to turn the

LED on, we have to pull the

Cathode down to ground (0 volts)

level to allow the LED to turn on.

The destroy function (shown

below) basically cleans up the

states of the pins so we don't get

any errors the next time we need

to use them.

Finally, we use the “main loop”

(shown bottom) to call the

routines in the proper order and to

allow us an easy way to break out

of the loop by pressing the Ctrl-C

key sequence.

So, load the program into your

RPi and run it. You will notice the

text “...LED Off” keeps repeating

on the screen until you press the

button. That is due to the fact that

our loop routine reads the level or

status of the button pin and once

the voltage goes low, it says

“oh...the button input is low, so I

need to turn on the LED”.

One other thing to notice is

that our first and second routines

are named “setup” and “loop”. It is

a good thing to keep this format,

because when we get to the

Arduino programming, these two

routines are required.

We are going to stop here for

this month. I want the other

authors to have room for their

articles. Keep everything close at

hand, because we will be using the

same hardware setup next time.

Enjoy playing for now and I will

see you next month.

def loop():
while True:

if GPIO.input(BtnPin) == GPIO.LOW:
print('...LED On')
GPIO.output(LedPin,GPIO.LOW)

else:
print('...LED Off')
GPIO.output(LedPin,GPIO.HIGH)

def destroy():
GPIO.output(LedPin,GPIO.HIGH)
GPIO.cleanup()

if __name__ == '__main__':
setup()
try:

loop()
except KeyboardInterrupt:

destroy()

The Ubuntu Podcast covers all

the latest news and issues facing

Ubuntu Linux users and Free

Software fans in general. The

show appeals to the newest user

and the oldest coder. Our

discussions cover the

development of Ubuntu but

aren’t overly technical. We are

lucky enough to have some

great guests on the show, telling

us first hand about the latest

exciting developments they are

working on, in a way that we can

all understand! We also talk

about the Ubuntu community

and what it gets up to.

The show is presented by

members of the UK’s Ubuntu

Linux community. Because it is

covered by the Ubuntu Code of

Conduct it is suitable for all.

The show is broadcast live every

fortnight on a Tuesday evening

(British time) and is available for

download the following day.

podcast.ubuntu-uk.org

http://www.thedesignatedgeek.net
http://podcast.ubuntu-uk.org/


full circle magazine #1 05 1 2 contents ^

HHOOWW--TTOO
Written by Greg D. Walters PPyytthhoonn II nn TThhee RReeaall WWoorrlldd PPtt .. 6633

W elcome back to our Real

World programming series.

Last time, we programmed the RPi

to turn on and off an LED when a

button was pressed. Very simple,

but this got us started. This month,

we will do another simple project,

a traffic light simulator using 3

LEDs, one Red, one Yellow and one

Green. For the most part, the code

is very similar to what we used last

month, so you shouldn’t have any

problems. If you have any

questions, I suggest you look at

last month’s article which should

answer any of your concerns.

First, let’s look at the schematic

and the breadboard (below right) .

Notice that the wire colours

correspond to its ‘job’, with the

exception of the orange wire. The

red wires supply 3.3 volts. The

green wire controls the green LED,

the yellow wire controls the yellow

LED, and the orange wire controls

the red LED, since the red wire is

already being used.

You should also know that the

pins being used should work on a

RPi v1 a/b, RPi v1 b+ and RPi v2b.

The red LED cathode is

connected to GPIO 1 7 (Physical pin

1 1 ) , yellow LED cathode is

connected to GPIO 23 (Physical pin

1 6) , and the green LED cathode is

connected to GPIO 22 (Physical pin

1 5). The Anodes of all three LEDs

are connected to one side of 220

Ohm resistors and the other sides

are connected to a common 3.3



full circle magazine #1 05 1 3 contents ^

HOWTO - PYTHON

VDC. We don’t need the ground

voltage for this particular project.

Since I ’ve driven only in the U.S.

I ’ve based the simulation on our

traffic patterns. Long red light (1 0

seconds), green light is usually

shorter than the red light time (8

seconds), and the yellow light is

fairly short (2 seconds). These

values are currently hard coded in

the time.sleep() function calls. Feel

free to change them as you see fit.

Now let’s start working through

the code.

#!/usr/bin/env python

# Traffic Light Simulator
# Written by G. D. Walters

#--------------------------

import RPi.GPIO as GPIO
import os
import time
import datetime

#--------------------------

RedLedPin = 17
YellowLedPin = 23
GreenLedPin = 22

The first 9 lines are our

standard import statements and a

few comment lines. The next three

lines define the BCM pin numbers

for our LED pins. If you wish to use

physical pin numbers, be sure to

change the GPIO.setmode() line in

the next routine (top right) .

As I mentioned above, the

GPIO.setmode needs to be

changed from ‘GPIO.BCM’ to

‘GPIO.BOARD’ if you want to use

the physical pin numbers instead

of the BCM numbers in our

definitions. The next three lines

set the LED pins as output pins,

and then turn all three LEDs off to

start the program by setting the

output value to HIGH.

def LEDLoop():
print "Green On..."

GPIO.output(GreenLedPin,0)
time.sleep(8)

GPIO.output(GreenLedPin,1)
print "Green Off..."
print "Yellow On..."

GPIO.output(YellowLedPin,0)
time.sleep(2)

GPIO.output(YellowLedPin,1)
print "Yellow Off..."
print"Red On..."
GPIO.output(RedLedPin, 0)
time.sleep(10)
GPIO.output(RedLedPin,1)
print "Red Off..."

The LEDLoop routine is very

simple:

• We print on the console “<color>

On…”,#

• Turn the LED on by setting the

output value to 0 or low,

• Sleep for a designated period,

• Set the output value of the pin

back to 1 or high,

• Then print that the LED is now

off.

This is then duplicated for the

Yellow and Red LEDs. The loop()

routine simply forces the

def setup():
GPIO.setmode(GPIO.BCM) # Numbers GPIOs by physical location

GPIO.setup(RedLedPin, GPIO.OUT) # Set the 3 LedPins mode as output
GPIO.setup(YellowLedPin, GPIO.OUT)
GPIO.setup(GreenLedPin, GPIO.OUT)

GPIO.output(RedLedPin, GPIO.HIGH) # Turn off LEDs
GPIO.output(YellowLedPin, GPIO.HIGH)
GPIO.output(GreenLedPin, GPIO.HIGH)

def destroy():
GPIO.output(RedLedPin, GPIO.HIGH) # led off
GPIO.output(YellowLedPin, GPIO.HIGH) # led off
GPIO.output(GreenLedPin, GPIO.HIGH) # led off
GPIO.cleanup() # Release resource

if __name__ == '__main__': # Program start from here
setup()
try:

loop()
except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the child program destroy()

will be executed.
destroy()



full circle magazine #1 05 1 4 contents ^

Greg Walters is owner of RainyDay
Solutions, LLC, a consulting company
in Aurora, Colorado, and has been
programming since 1 972. He enjoys
cooking, hiking, music, and spending
time with his family. His website is
www.thedesignatedgeek.net.

HOWTO - PYTHON

LEDLoop() routine to be called

over and over until the user hits

<CTRL> C on the RPi keyboard.

def loop():
while True:

LEDLoop()

The destroy routine and the

main loop are the same as last

month. We simply set all the LED

pins to high, turning them off, and

then call GPIO.cleanup() .

I ’m not sure that we could make

a much simpler program to do

what we need to do.

If you want, you could duplicate

the 3 LEDS and make an

intersection simulation before

next time.

Next time, we’ll have something

that is a bit more challenging. Until

then, happy programming.

THE OFFICIAL FULL CIRCLE APP FOR UBUNTU TOUCH

B rian Douglass has created a

fantastic app for Ubuntu Touch

devices that will allow you to view

current issues, and back issues, and

to download and view them on your

Ubuntu Touch phone/tablet.

INSTALL

Either search for 'full circle' in the

Ubuntu Touch store and click

install, or view the URL below on

your device and click install to be

taken to the store page.

https://uappexplorer.com/app/

fullcircle.bhdouglass

http://www.thedesignatedgeek.net
https://uappexplorer.com/app/fullcircle.bhdouglass


full circle magazine #1 07 1 5 contents ^

HH OOWW--TTOO
Written by Greg D. Walters PPyytthh oonn II nn TThh ee RReeaa ll WWoorrlldd -- PPtt 6644

W elcome back to the crazy

world of Python

Programming in the real world.

Before we get started, I need to

make a confession. Last time I

goofed. The images in part 63 are

wrong. The LEDs are backwards

from what they should be. Brian

Kelly noted this and was brave

enough to point out the old man’s

errors. Thank you Brian. If you

follow the text, you should be

good to go.

Secondly, I have to apologize

for not making it last month

(FCM#1 06). I ’m having more

medical issues that are keeping me

from sitting for too long. Hopefully

this will be taken care of soon.

Enough of that. Now for this

month’s offering.

THE MYSTERY LED

In the last two articles, we

learned how to turn on and off

LEDs programmatically. That was

simple enough. This is digital

output as opposed to analog

output. The RPi, unlike the

Arduino, cannot do analog I/O. So

we are limited to turning a GPIO

pin (and in this case, a LED) either

on or off. This time we will be using

that knowledge to do something

pretty interesting.

So get your Pi and your

breadboard and we’ll start

working.

THE WIRING

You will need a Raspberry Pi, a

breadboard, two LEDs - one Red

and one White, two 220 Ohm

resistors and 3 jumper wires.

I ’ve used the original Pi for this

wiring image example. If you have

a Pi B+ or 2B (or even the brand

new 3), the pins at this point are

exactly the same.

Just to avoid confusion (on my

side), the Cathodes (Negative side)

of the LEDS are connected to the

resistors going to ground, and the

Anodes (Positive side) are

connected through the jumper

wires to the Pi pins. The positive



full circle magazine #1 07 1 6 contents ^

HOWTO - PYTHON

side of the LED is usually marked

by the longer lead and the

negative side is the one that has

the flat spot on the base of the

LED.

THE CODE

I won’t explain the code just

yet. Just put into the editor as it is.

We will discuss it in a bit.

Once you have the code

entered correctly, then run it and

see what happens.

THE REVEAL

I f you have been paying

attention over all these years, you

probably have figured out what

the code is doing. If you can’t

figure it out, don’t feel bad. We’ll

jump into the explanation.

Instead of the LEDs being

either on or off, they pulse on and

off. Since I said earlier, we can only

send out (or read) a On/Off

voltage (or 1 /0, or High/Low), so

how can this be?

We are using a trick called PWM

or Pulse Width Modulation. We are

still living with the rules, but we

are bending them to our benefit.

The pictures below, taken from my

oscilloscope connected to the

project, should help explain a bit

clearer. We will be concerned with

only one LED at this point.

If we send out a Low to the

GPIO pin to the LED it's zero volts.

The LED is getting nothing on the

Anode, so it is off. In the last two

articles, when we turned the LED

on by sending the Anode of the

LED a High So we have in the first

instance a zero, and in the second

a 1 . Just like we have assumed...

either Off or On.

This time we vary the amount

of time that the GPIO signal is high

and low. If we do it slowly, the LED

would simply flash on and off in

response to the voltage. In the

case of this version, we are

switching it on and off very quickly

and at the same time, changing the

amount of time it is on compared

to off, which is called the duty

cycle.

You can see that the signal is on

for about 80% of the time and off

for about 20%, which would be a

80% duty cycle. By doing this

quickly, the LED reacts by dimming

import RPi.GPIO as GPIO
from time import sleep
GPIO.setmode(GPIO.BCM)
GPIO.setup(25,GPIO.OUT)
GPIO.setup(24,GPIO.OUT)
white = GPIO.PWM(25,100)
red = GPIO.PWM(24,100)
white.start(0) # start white led on 0 percent duty cycle (off)
red.start(100) # red fully on (100%)
pause_time = 0.05
print("Program Starting...Press CTRL+C to exit")
try:

while True:
for i in range(0,101): #101 because it stops when it finishes 100

white.ChangeDutyCycle(i)
red.ChangeDutyCycle(100-i)
sleep(pause_time)

for i in range(100,-1,-1):
white.ChangeDutyCycle(i)
red.ChangeDutyCycle(100-i)
sleep(pause_time)

except KeyboardInterrupt:
white.stop()
red.stop()
GPIO.cleanup()



full circle magazine #1 07 1 7 contents ^

HOWTO - PYTHON

a bit from the 1 00% on all the

time. As the program does its loop,

it changes the duty cycle and

makes the high longer or shorter

depending on what part of the

loop it is.

In the picture above, we have a

duty cycle of about 5%. In this case

the LED is turned on for such a

short time, that it is extremely dim

and for all intents and purposes it

is off.

Now, let’s start taking apart the

code.

import RPi.GPIO as GPIO
from time import sleep

As always, we start with our

imports. We import the GPIO

library, and this time, we import

the sleep function from the time

library. You will understand the

reason for that shortly.

GPIO.setmode(GPIO.BCM)
GPIO.setup(25,GPIO.OUT)
GPIO.setup(24,GPIO.OUT)
white = GPIO.PWM(25,100)
red = GPIO.PWM(24,100)

In these five lines, we set the

GPIO mode to BCM, and set the

GPIO pins 24 (physical pin 9) and

25 (physical pin 1 1 ) to be output

pins. We have done this before.

Now we set the values for the

PWM to 1 00% duty cycle.

white.start(0) # start white
led on 0 percent duty cycle
(off)

red.start(100) # red fully on
(100%)

We next turn the Red LED on

(1 00%) and the white LED to 0

volts.

pause_time = 0.05

print("Program
Starting...Press CTRL+C to
exit")

We set the pause_time variable

to 0.05 seconds. This makes it fast

enough to (hopefully) not allow for

a flicker.

In the next block of code, we do

our loops. The first loop is to make

the white LED get “brighter” and

the red LED to get “dimmer”. The

second is to reverse the process.

Just using the first loop as an

example, we use a FOR LOOP to

set the value of i and then we set

the duty cycle for the white LED to

i and that of the red LED to 1 00-i.

Notice that we have wrapped

this with a TRY...EXCEPT set. This

allows us to continue to run until

the user enters CTRL+C. When that

happens, we fall out of the TRY

side so we can do our clean up

code.

So now you know that we can

bend the rules to our use.

Next time, we will start to

examine a different GPIO library.

Until then, have fun.

Alan holds a PhD in Information and
the Knowledge Society. He teaches
computer science at Escola
Andorrana de Batxillerat (high-
school) . He has previously given
GNU/Linux courses at the University
of Andorra and taught GNU/Linux
syadmin at the OU of Catalunya.

try:
while True:

for i in range(0,101): # 101 because it stops when it finishes 100
white.ChangeDutyCycle(i)
red.ChangeDutyCycle(100-i)
sleep(pause_time)

for i in range(100,-1,-1):
white.ChangeDutyCycle(i)
red.ChangeDutyCycle(100-i)
sleep(pause_time)

except KeyboardInterrupt:
white.stop()
red.stop()
GPIO.cleanup()



full circle magazine #1 08 1 5 contents ^

HHOOWW--TTOO
Written by Greg D. Walters PPyytthhoonn II nn TThhee RReeaall WWoorrlldd -- PPtt 6655

W elcome back. This month

will be a hodgepodge of

information. The main reason is

that there are some important

advances in tech and you will need

time to get some parts for the

next few articles.

In the near future, we will be

adding the Arduino into our

toolbox. I suggest starting off with

the UNO or a UNO clone which can

be purchased for less than $30 US

(£22). We will also need some

sensors to really get going. While

these are optional and you can just

read the article, building these

projects are more than half the

fun. So, with that said, here is a list

of parts…

• One Wire Digital Temperature

Sensor - DS1 8B20

• DHT1 1 Basic

Temperature/Humidity Sensor

• 1 6x2 LCD Display

• 4.7K and 1 0K ¼ Watt resistors (3

or 4 of each)

• Large Breadboard (60+ x 1 0 with

power rails)

• 1 0K Potentiometer (2 or 3)

• Male to Female jumpers (Pi to

Breadboard) about 8”

• Male to Male jumpers (Arduino to

Breadboard) about 8”

• Male to Male jumpers

(Breadboard to Breadboard) small

to medium

• Toy/Hobby motor 6 VDC

• L293D or SN75441 0 Motor

Control Chip

• 4 AA Battery Holder and

Batteries.

This will pretty much get you

going for the next few months. Of

course, you could get more and

explore on your own. Most

everything on the list is less than

$1 0 US. If you shop the internet

diligently, you can get very good

prices on everything really

inexpensively. We’ll leave this for

now, but for next time, you will

need the DS1 8B20 temperature

sensor and a 4.7K resistor as well

as a breadboard and jumpers if you

don’t already have one.

Recently, there has been a

great stir on the Internet about the

Amazon Echo / Alexa device

software being ported to run on

the Raspberry Pi. The biggest

reason for the excitement is that

currently the Echo / Alexa is

available only in the US and many

people in the UK and other

countries have been waiting, not

so patiently, for it. This gives them

a chance to enjoy the technology.

There are at least two projects

currently working on getting Echo

on the Pi. The first uses Java. You

can find the code and instructions

at https://github.com/amzn/alexa-

avs-raspberry-pi. I have done this

project on both a Pi Version 1 B and

the new Pi 3B. It worked well on

both. Many people have problems

getting this to work, but I did it in

about 4 hours (with small breaks

and interruptions) , and it worked

the first time. The best advice I can

give you is take your time, plan on

a long weekend, and follow the

instructions to the letter. The only

problem that I had was that npm

and nvm needed to be installed,

and, at that time, these installation

instructions were not included. I

believe this issue has been

corrected.

The second project uses Python

and is located at

https://github.com/lennysh/AlexaP

i. To be honest, I tried this, but

could not get it to run. I will tell

you that I did not spend nearly as

much time on this project as I did

on the Java version, due to many

doctor visits this past week. I

intend to spend more time on it to

try to get it working.

If you decide to try either

projects, PLEASE use a blank SD

card and not one that has

something you want to keep. Load

the Raspbian or NOOBS OS from

scratch. That way, if something

goes wrong, you can just reload

the OS and start fresh.

There are some things you need

to know before you attempt to do

this project. All of the information

below pertains to the java version,

but some can be considered to

apply to both projects…

• You need to have a USB

microphone. Headphone based

microphones have issues. I ’m using

a Logitech webcam with built in

microphone and it works well.

• You will also need a set of

speakers or headphones attached

https://github.com/amzn/alexa-avs-raspberry-pi
https://github.com/lennysh/AlexaPi


full circle magazine #1 08 1 6 contents ^

Greg Walters is owner of RainyDay
Solutions, LLC, a consulting company
in Aurora, Colorado, and has been
programming since 1 972. He enjoys
cooking, hiking, music, and spending
time with his family. His website is
www.thedesignatedgeek.net.

HOWTO - PYTHON

to the audio out jack. Many people

have had lots of issues with

bluetooth audio devices.

• You must push a button to get

the Echo / Alexa to listen for your

command. It doesn’t currently

listen for the “wake” word. (more

below).

• Some of the features that the

actual Echo / Alexa have don’t

currently work.

• Things like location, weather,

traffic, work correctly only in the

USA. In any other country, you will

get information for Seattle,

Washington, USA

• The only supported language

currently is English. According to

what I was able to find out from

my research is that, once the

device is being sold in a given

country, they will add support for

that country's “official” language. I

understand that in the UK, the

official language is English, and

that in the USA, there is no

“official” language and that

Spanish is a largely spoken

language, but is not supported on

the device as yet. There are many

flame threads on the web – if you

wish to voice your ire at the fact

that your language of choice is not

supported or that the Echo / Alexa

is not available there. All I can

suggest is that you should be

patient. The device was a sleeper

for a while and just recently took

off well. Amazon, I ’m sure, is

working on support for other

countries right now.

• When you start the app, you have

to run two processes. The second

one will create a GUI box which has

a long URL string that you must

copy and paste into a web browser.

Once that gets to Amazon

properly, then you must click the

[OK] button on the screen. You will

be presented with a screen that

has a [Start Listening] button and

some multimedia buttons. To

“wake” Alexa up, you click the

‘start listening’ button and, after

you hear the “ding”, speak your

question or command. When

finished, you can click that button

again to have it stop listening and

process your command, or you can

let it timeout (about 5 seconds)

then it will start processing. Many

people are working on headless

operation (no monitor) and a

physical button connected to a

GPIO pin, and some are actually

working on the “wake” word

option. You can find more

information in the issues section.

• You should (read MUST) use a

decent quality SD card. My

suggestion is to get nothing less

than a Class 1 0 card that is no

smaller than 1 6 Gig.

• As soon as you boot into the new

operating system for the first time,

run a ‘sudo raspi-config’. Be sure to

enlarge the file system to take in

the entire card. Be sure to turn

SSH on. You will need to reboot

here. Next you should then do a

‘sudo apt-get update’ and then a

‘sudo apt-get dist-upgrade’ so you

are at the latest software

revisions.

• There are some steps that

require you to enter certain data.

Make notes of what you entered,

either by a screen shot, into your

smartphone, or (HORRORS!!! ! ! ! ) on

paper. It will make things easier.

• If you have any problems, check

the issues section. More than likely

someone has already had the same

problem and there might be a fix.

• Print the web page with the

instructions and work off the print.

This way, you can check off those

steps you have already completed.

Especially helpful if you get

interrupted.

• You can find more information,

and change certain settings, at

alexa.amazon.com. I understand

that some people who are not in

the USA have problems with this

site.

I think that’s enough for this

month, but next month, we will

turn our RPi into a thermometer.

The neat thing about using the

DS1 8B20 sensor is that you have

more of them on a single line. This

way, you could use one in the living

room, one outside, etc. We’ll use

these sensors later on with the

Arduino and be able to use the

arduino as a remote device so we

don’t have to try to run a long

cable and change the resistance to

a point that it won’t work.

Until next month, enjoy

checking out the Alexa project,

and, if you try it / them, hope you

have success.

http://www.thedesignatedgeek.net


full circle magazine #1 09 1 8 contents ^

HH OOWW--TTOO
Written by Greg D. Walters PPyytthh oonn II nn TThh ee RReeaa ll WWoorrlldd -- PPtt 6655

L ast month, I suggested you get

a number of parts and if you

were able to get them, I hope that

it didn’t cost you too much. If you

haven’t gotten them, then follow

along as best you can, and if there

is a particular project you want to

try, then get those components

that are needed. I ’m trying to do

this on as little cash outlay for

either you or me as possible.

Frequently, you can recycle many

of the items from older electronic

items; many can be found at a local

thrift store for pence on a pound.

(Hopefully I got that one right. We

say pennies on a dollar here, so at

least give me an “F” for effort…

ok?)

As I was laying last week,

waiting for some surgery, I was

thinking that if someone were to

come up to me and ask directly

why I ’m doing this, what my

answer would be. Before the

wonderful chemicals they pumped

into my body to make the process

less horrible, I realized that the

REAL reason is multi-part. First, is

to create excitement in “non-

programmers” when doing things

that seemingly could not be done

without a ton of training. Secondly,

is to show that the newer

technology, like the Raspberry Pi

and the Arduino, is not beyond the

ken of the “general joe” out there,

but that anyone can do things that

have real world applications (hence

the title of our series) . That having

been said, making LEDs blink is

only the same kind of project for

the hardware world as the “Hello

World” program is in the

programming realm. You have to

take small steps before you move

to the big race. Believe me, we will

be doing some amazing things with

all those little parts, whatsits and

thingamabobs.

This month, we will be using the

DHT1 1 Basic Temperature/

Humidity Sensor with our

Raspberry Pi. Next month, we will

be doing the same sort of thing

using the Dallas DS1 8B20

temperature sensor, and if there is

time and/or space, we’ll also talk

about the 1 6x2 LCD display. In a

few months, we’ll switch from the

Raspberry Pi to using the Arduino.

Don’t worry, none of the things we

are using now will go unused after

a single project. For example, once

we have a grasp of some of the

Arduino basics (which WILL involve

learning a small amount of ‘C’ like

programming (sorry about that)) ,

we’ll be writing programs in

Python on the RPi (or your local

computer) to control the Arduino.

The sensors we have learned about

in our RPi experiments will be re-

used when we learn about the

Arduino, and many will be

incorporated into some larger

projects. Very shortly, we will be

using DC Motors, Solenoids and

Stepper Motors in some really

basic projects, but we’ll use them

in larger projects, including

building a Computer Controlled

(RPi) Laser Engraver using a Laser

Diode recovered from an old DVD

Burner.

Enough about the future. Let’s

start with this month's project.

The DHT1 1 is the least

expensive sibling of a series of

temperature and humidity sensor

sets. The DHT1 1 has a temperature

range from 0⁰ to 50⁰ C with ±2⁰ C

accuracy (32⁰ to 1 22⁰ F, ±3.6⁰F) and

a humidity range from 20-90%RH

±5%. You can see that it’s not the

most accurate sensor on the

market; there is a DHT22 that is

more accurate and has a wider

range (-40⁰ to 80⁰ C temp range)

but about twice as expensive.

It’s a bit of a funny looking

thing. A blue rectangular plastic

box with holes in it and something

shiny inside it. It might come just

as a single sensor with 4 pins, or

already on a mini-circuit board with

3 or 4 pins. Either way, they are

basically the same. For now, we’ll

use the discrete component (the

one without the circuit board) for

the sake of the discussion, and I ’ll

address the differences as we go

along.

Whenever you want to work

with a new sensor, you should get

a spec sheet (data sheet). A simple

web search should turn up a

number of results. Try to get

something directly from the

manufacturer if at all possible. For

the DHT1 1 , a good place to get

one of the various data sheets



full circle magazine #1 09 1 9 contents ^

HOWTO - PYTHON

available is

http://www.micropik.com/PDF/dht

1 1 .pdf. While this isn’t directly

from the manufacturer, it is from a

company that sells it, and has

“translated” the manufacturer’s

data into a 9-page PDF file.

You might already be asking,

why do I need this? There’s a bunch

of information that, unless you

have a PhD in Physics or

something, you’ll never need. Well,

that is true, but there is a lot of

information that IS relevant and

can potentially keep you from

blowing up either the sensor, the

controller, or your work bench. In

this case, we find that the DC

operating voltage is between 3 to

5 volts and it pulls about 0.5mA

during “normal” conditions

(section 6). We also find that this is

a rather slow device and that we

should not try to pull data more

than once per second. Basically

we’ll keep it around once every

five seconds in our testing

program, which is way more than

we’ll need in reality. Another thing:

if the cable that sends the data

from the sensor to the

microcontroller (our RPi) is less

than 20 meters, we should have

about a 5K ohm resistor between

the data line and the local power

supply (at the sensor) as a pull-up.

One last thing (I ’m going to stop

here, but there’s much more): Pin 1

is positive voltage, Pin 2 is the data

pin, and Pin 4 is the ground pin.

This gives us pretty much

everything we need to know to

safely connect this to our RPi.

Below is the wiring diagram for a

“raw” DHT1 1 sensor WITHOUT a

breakout board. If you have a

sensor with a breakout board, see

my discussion below the diagram.

Notice that I said earlier that a

5K resistor was needed as a pull-

up. If you are going to use 3.3 VDC

as a power source (RPi pin 1 ) , then

a 5K resistor works pretty well. If,

however, you are going to use 5

VDC as shown in the diagram, use a

1 0K resistor.

You can see that it’s fairly

simple, just three wires and a

resistor. For our simple project,

don’t try to make the wiring the

entire 20 meters though.

If you have a DHT1 1 on a

breakout board, you will likely have

only 3 output pins on it. I have two

sensors from different vendors,

and (go figure) both have a

different pinout. One is laid out

[Data] [Positive Voltage] [Ground]

and is marked “S -”. The other is

[Ground] [Data] [Positive Voltage]

and is marked as such. Hopefully,

yours has some sort of pinout

definition printed on it. If not, you

can use a multimeter to trace the

ground pin and voltage pin directly

from the sensor to the breakout

pin. You can usually guess that if

there are three output pins on the

breakout board and you know

ground and positive voltage, then

the other SHOULD be the data pin.

Now our program code.

For the sake of getting things

up and running quickly, we will be

http://www.micropik.com/PDF/dht11.pdf


full circle magazine #1 09 20 contents ^

HOWTO - PYTHON

using some code provided by the

kind people at Adafruit.com – they

provide the library for working

with the DHT1 1 . (They found that

trying to run straight Python code

for the library causes some timing

issues, so the library is actually

written in ‘C’.) There are a number

of steps involved, so follow the

instructions carefully. I ’ve

paraphrased them so if something

doesn’t work, you can also find the

instructions at the Adafruit

website at

https://learn.adafruit.com/dht-

humidity-sensing-on-raspberry-pi-

with-gdocs-logging/software-

install-updated . Once everything

is done, you can run my modified

Python example presented at the

end of the instructions.

In your "/home/pi" directory,

run the following commands:

git clone
https://github.com/adafruit/A
dafruit_Python_DHT.git

cd Adafruit_Python_DHT

sudo apt-get update

sudo apt-get install build-
essential python-dev python-
openssl

Ignore any errors that state a

package is already installed.

Next, install the library by

running:

sudo python setup.py install

Once all that is done, you can

move on to our sample code.

Above is my modified sample

code “borrowed” from the Adafruit

sample code.

All of the above can basically be

boiled down to three lines of code.

The two import statements and

the assignment of the variable

‘sensor’ to the class code.

pin = 4
sleep(3)

Here we define that the sensor

is connected to GPIO pin 4 and

then we wait 3 seconds for things

to settle and be ready to work.

We use a simple loop (next

page, top right) to grab the values

for humidity and temp over and

over. I never got the knack of

relating Celsius to “real”

temperatures, so I convert it so

that I can understand it. If you

want Celsius, just comment out the

conversion line.

Now (next page, bottom right)

we check to see if we got realistic

values for both humidity and

temperature, then we display

them and sleep for 5 seconds.

I must admit, when I run the

program with one sensor, it gives

some rather wacky results for the

first two or three minutes, then

#!/usr/bin/python
# simpletest.py
#----------------------------------------------------
# Original code information copyright below.
# Copyright (c) 2014 Adafruit Industries
# Author: Tony DiCola
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# Code modifications by G.D. Walters for Full Circle Magazine
import Adafruit_DHT
from time import sleep
#----------------------------------------------------
# Sensor should be set to Adafruit_DHT.DHT11,
# Adafruit_DHT.DHT22, or Adafruit_DHT.AM2302.
#sensor = Adafruit_DHT.DHT22
#----------------------------------------------------
sensor = Adafruit_DHT.DHT11
#----------------------------------------------------



full circle magazine #1 09 21 contents ^

Greg Walters is owner of RainyDay
Solutions, LLC, a consulting company
in Aurora, Colorado, and has been
programming since 1 972. He enjoys
cooking, hiking, music, and spending
time with his family. His website is
www.thedesignatedgeek.net.

HOWTO - PYTHON

settles down to values that I can

trust. The other sensor seems to

“lock in” faster, so I ’m just writing

it off to something in the first

sensor.

Well, that’s it for this month.

Remember, we’ll be using the

Dallas temp sensor next time, so

be ready.

Have a good time and I ’ll see

you next month.

#----------------------------------------------------
# Here we loop over and over getting and displaying the
data.
# Use <Ctrl><C> to break out.
#----------------------------------------------------
while 1:

# Try to grab a sensor reading. Use the read_retry
method which will retry up

# to 15 times to get a sensor reading (waiting 2
seconds between each retry).

humidity, temperature =
Adafruit_DHT.read_retry(sensor, pin)

# Comment out the next line to display Celsius
temperature = temperature * 9/5.0 + 32

The Ubuntu Podcast covers all

the latest news and issues facing

Ubuntu Linux users and Free

Software fans in general. The

show appeals to the newest user

and the oldest coder. Our

discussions cover the

development of Ubuntu but

aren’t overly technical. We are

lucky enough to have some

great guests on the show, telling

us first hand about the latest

exciting developments they are

working on, in a way that we can

all understand! We also talk

about the Ubuntu community

and what it gets up to.

The show is presented by

members of the UK’s Ubuntu

Linux community. Because it is

covered by the Ubuntu Code of

Conduct it is suitable for all.

The show is broadcast live every

fortnight on a Tuesday evening

(British time) and is available for

download the following day.

podcast.ubuntu-uk.org

http://www.thedesignatedgeek.net
http://podcast.ubuntu-uk.org/


29 contents ^

HHOOWW TTOO CCOONNTTRRIIBBUUTTEE
Ful l Circle Team

Edit or - Ronnie Tucker

ronnie@fullcirclemagazine.org

Webmast er - Lucas Westermann

admin@fullcirclemagazine.org

Edit ing & Proof reading

Mike Kennedy, Gord Campbell, Robert

Orsino, Josh Hertel, Bert Jerred, Jim

Dyer and Emily Gonyer

Our thanks go to Canonical, the many

t ranslat ion teams around the world

and Thorst en Wilms for the FCM logo.

FULL CIRCLE NEEDS YOU!
A magazine isn't a magazine without art icles and Full Circle is no

except ion. We need your opinions, desktops, stories, how-to's,

reviews, and anything else you want to tell your fellow *buntu users.

Send your art icles to: art icles@fullcirclemagazine.org

We are always looking for new art icles to include in Full Circle. For help and advice

please see the Of f icial Ful l Circle St yle Guide: ht tp:/ /url.fullcirclemagazine.org/75d471

Send your comment s or Linux experiences to: let ters@fullcirclemagazine.org

Hardware/sof tware reviews should be sent to: reviews@fullcirclemagazine.org

Quest ions for Q&A should go to: quest ions@fullcirclemagazine.org

Deskt op screens should be emailed to: misc@fullcirclemagazine.org

... or you can visit our sit e via: fullcirclemagazine.org

Please note:
Special editions are 

compiled from originals

and may not work with 

current versions.

EPUB Format - Most edit ions have a link to the epub f ile

on that issues download page. If you have any problems

with the epub f ile, email: mobile@fullcirclemagazine.org

Issuu - You can read Full Circle online via Issuu:

ht tp:/ / issuu.com/fullcirclemagazine. Please share and rate

FCM as it helps to spread the word about FCM and Ubuntu.

Magzst er - You can also read Full Circle online via

Magzster: ht tp:/ /www.magzter.com/publishers/Full-Circle.

Please share and rate FCM as it helps to spread the word

about FCM and Ubuntu Linux.

Get t ing Ful l Circle Magazine:

For t he Ful l Circle Weekly News:

You can keep up to date with the Weekly News using the RSS

feed: ht tp:/ / fullcirclemagazine.org/ feed/podcast

Or, if your out and about , you can get the Weekly News via

St itcher Radio (Android/ iOS/web):

ht tp:/ /www.st itcher.com/s?f id=85347&ref id=stpr

and via TuneIn at : ht tp:/ / t unein.com/radio/Full-Circle-Weekly-

News-p855064/

Special Editions - Jonathan Hoskin


