
THE INDEPENDENT MAGAZINE FOR THE UBUNTU LINUX COMMUNITY

PROGRAMMING SERIES SPECIAL EDITION

  

  
 Volume  Volume Ten  
    Parts Parts 54 - 59 

Full Circle

Full Circle Magazine is neither ailiated, with nor endorsed by, Canonical Ltd.

PYTHONPYTHON



full circle magazine #85 1 1 contents ^

HH OOWW--TTOO
Written by Greg D. Walters PPrroogg rraa mm II nn PPyytthh oonn -- PPaa rrtt 5544

M any years ago, I was dealing

with high blood pressure

issues. My doctor suggested that I

do something that allowed me to

concentrate on something fairly

useful, but rather trivial. I dealt

with it by trying to do counted

cross stitch. It’s creative, focused,

and keeps your mind occupied on

what you are doing, not what is

bothering you. I find myself in that

position again, so I broke out the

hoop and needles and started

again.

In case you aren’t familiar with

counted cross stitch, I ’ll give you a

gross overview of what it is. Cross

stitch is a type of needlework that

uses tiny ‘x’ patterns of thread that

eventually make up a picture. The

thread is called “floss” and the

fabric that you use is called “aida”.

According to Wikipedia, aida is a

special fabric that has tiny squares

that have small holes at regular

intervals that form the squares.

This facilitates the placement of

the “x” patterns that make the

image. There are two types of cross

stitch. One has an image printed on

the aida (sort of like paint by

numbers) , and the other uses

totally blank aida that you count

stitches from the pattern. The

second is much harder than the

first. Go to your favorite fabric

store or craft section of your local

mega-mart and you’ll get the idea.

Also a while back, I started

playing with creating a program

that would take an image and

convert it into a cross stitch

pattern. One thing lead to another,

and I had to shelve the program for

other things. I ’ve now dusted off

the idea and started anew.

We will spend the next few

articles dealing with this project. It

will take a while, since some things

are fairly complex and have many

parts to them. Here is the “game

plan”:

• Create a database for the pixel

colors to floss colors.

• Create a GUI using Tkinter for the

application.

• Flesh out the application to do

the manipulation of the image files.

• Create a PDF file that will be the

ultimate pattern for the project.

What you will learn

• Revisitation of database and XML

manipulation.

• Revisitation of Tkinter GUI

programming. If you missed the

previous articles on this, please

refer to FCM issues 51 thru 54.

• Image manipulation using PIL

(http://pillow.readthedocs.org/en/l

atest/) .

• PDF creation using pyFPDF

(https://code.google.com/p/pyfpdf

).

GETTING STARTED

The first thing in our list of tasks

is to create the database that will

hold the DMC(™) floss colors and

reference them to the closest

approximation to the RGB (Red,

Green, Blue) values that are used in

images on the computer. At the

same time, the database will hold

the hex value and the HSV (Hue,

Saturation, Value) representations

for each floss color. It seems that

HSV is the easiest way to find the

“closest” representation of a color

that will match the floss colors. Of

course, the human eye is the

ultimate decision maker. If you are

not familiar with HSV color

representations, there is a rather

complex writeup on Wikipedia at

http://en.wikipedia.org/wiki/HSL_a

nd_HSV. It might help, but it might

make things less clear.

The first thing we need is an

XML file that has the DMC floss

colors with a RGB conversion. The

best one I found is at

http://sourceforge.net/p/kxstitch/f

eature-requests/9/. The file you

want is dmc.xml. Download it and

put it in a folder that you will use

to hold the Python code.

Now we will be using apsw

(below) to do our database

manipulation, which you should

# makedb.py
# DMC.xml to SQLite database
# For Full Circle Magazine #85

import apsw
from xml.etree import ElementTree as ET
tablename = "DMC"

https://code.google.com/p/pyfpdf
http://pillow.readthedocs.org/en/latest/
http://sourceforge.net/p/kxstitch/feature-requests/9/


full circle magazine #85 1 2 contents ^

HOWTO - PYTHON PART 54

already have and ElementTree to

do the XML parsing (which is

included in Python version 2.7+).

As always, we start with our

imports. In this program, we have

only the two. We also set the name

of the table.

The next portion should be

familiar if you have been reading

the articles for a while. We create a

function that will read the XML file,

and parse it for us. We then can use

the information to load the

database. A snippet of the XML file

is shown top right.

We are looking for the <floss>

tag for each line of information. To

do this, we use the .findall(‘floss’)

command. Once we have the

information line, we break each tag

(name, description, etc.) into

separate variables to place into the

database. When it comes to the

<color> tag, we use the

.floss.findall(‘color’) command to

get each value of Red, Green and

Blue.

We start by telling the function

that we will be using the global

variables connection and cursor.

We then set the filename of the

XML file, parse the XML file, and

get started. We also use a counter

variable to show that something is

happening while the parsing and

database inserts are going on.

Now that we have all our data,

we need to create the SQL insert

statement and execute it. Notice

the “\” after the word VALUES in

the SQL statement. That is a line-

continuation character to make it

easier for printing here in the

magazine. We will be creating the

database and table in a few

moments.

SQL = "INSERT INTO DMC
(DMC,Description,Red,Green,Bl
ue) VALUES \

('%s','%s',%s,%s,%s)" %
(name,desc,red,green,blue)

cursor.execute(SQL)

Now, we print to the terminal

window that something is going

on:

print "Working record
{0}".format(cntr)

cntr += 1

Now we create and/or open the

database in the OpenDB routine

(bottom right). If you’ve been with

us when we have done database

work before, you will notice that

we are using two cursors this time.

The cursor variable is used for the

“normal” inserts, and later on in

the select statement for the

update to set the hex and HSV

values. We have to use two cursors,

since if you modify a cursor in the

middle of a logic statement, you

lose everything with the new

command. By using ‘ucursor’, we

can use that for the update

statements. Other than that, it is

our normal OpenDB routine.

<floss>
<name>150</name>
<description>Dusty Rose Ultra VDK</description>
<color>

<red>171</red>
<green>2</green>

<blue>73</blue>
</color>

</floss>

def ReadXML():
global connection
global cursor
fn = 'dmc.xml'
tree = ET.parse(fn)
root = tree.getroot()
cntr = 0
for floss in root.findall('floss'):

name = floss.find('name').text
desc = floss.find('description').text
for colour in floss.findall('color'):

red = colour.find('red').text
green = colour.find('green').text
blue = colour.find('blue').text

def OpenDB():
global connection
global cursor
global ucursor
global dbname
connection = apsw.Connection("floss.db3")
cursor = connection.cursor()
ucursor = connection.cursor()



full circle magazine #85 1 3 contents ^

HOWTO - PYTHON PART 54

Now that the database is

created and/or opened, we can set

up our table (top right). Notice that

the SQL statement below uses the

triple quote to allow for the line to

break neatly for viewing.

The EmptyTables routine

(middle right) is there just to make

sure that if we want to or need to

run the application more than

once, we start with a clean and

empty table if it exists.

IF we were to stop here, we

would have a reasonable working

database with the DMC color, color

name and the RGB values

associated with each. However, as I

alluded to before, it is easier to

pick the closest floss color by using

the HSV data.

We next create the hex value

from the RGB values (middle left) .

The next function creates the

HSV values from the RGB values. I

found the algorithm on the

internet. You can research it there.

Finally, we create the UpdateDB

function (next page, top left) . We

use the SELECT * FROM DMC

command and use the “standard”

cursor variable to hold the data.

We then step through the returned

data, and read the RGB values, and

pass them to the rgb2hex function

as a tuple and to the rgb2hsv

function as three separate values.

Once we get the return values, we

use the update SQL command to

match the proper record by using

the primary key (pkID). As I stated

before, we have to use a separate

cursor for the update statement.

The last thing we do is call each

of the functions in order to create

the database, and, at the end, we

print “Finished” so the user knows

everything is done.

OpenDB()
MakeTables()
EmptyTables() # Just to be
safe
ReadXML()
UpdateDB()
print "Finished"

I named this program

“MakeDB”. The database should be

created in the same folder where

the code and XML file are located.

As always, the full code can be

found at

http://pastebin.com/Zegqw3pi.

Next time, we will work on the

GUI . We use Tkinter for the GUI , so,

in the meantime, you might want

to refresh your memory by looking

at FCM issues 51 thru 54 where I

take you through Tkinter.

Until next time, have a good

month.

def MakeTables():
sql = '''CREATE TABLE IF NOT EXISTS DMC

(pkID INTEGER PRIMARY KEY, DMC INTEGER,
Description TEXT, Red INTEGER, Green INTEGER, Blue INTEGER,
HEX TEXT,H INTEGER,S INTEGER,V INTEGER)'''

cursor.execute(sql)

def EmptyTables():
sql="DELETE FROM %s" % tablename
cursor.execute(sql)

def rgb2hex(rgb):
return '%02x%02x%02x' % rgb

def rgb2hsv(r, g, b):
r, g, b = r/255.0, g/255.0, b/255.0
mx = max(r, g, b)
mn = min(r, g, b)
df = mx-mn
if mx == mn:

h = 0
elif mx == r:

h = (60 * ((g-b)/df) + 360) % 360
elif mx == g:

h = (60 * ((b-r)/df) + 120) % 360
elif mx == b:

h = (60 * ((r-g)/df) + 240) % 360
if mx == 0:

s = 0
else:

s = df/mx
v = mx

return int(round(h,0)), int(round(s*100,0)),
int(round(v*100,0))

http://pastebin.com/Zegqw3pi


full circle magazine #86 1 0 contents ^

HHOOWW--TTOO
Written by Greg D. Walters PPrrooggrraamm II nn PPyytthhoonn -- PPaarrtt 5555

T his is the second in a multi-part

tutorial on creating a Cross

Stitch pattern generator. In the

first part (FCM85), we created a

database containing the DMC™

floss colors with their closest RGB

values. In this part, we will create

the GUI using Tkinter. We will also

use PIL (Python Imaging Library)

and PMW (Python Mega Widgets).

You’ll need to download those

libraries and install them before we

go too far. For PIL, go to the Pillow

fork at https://github.com/python-

imaging/Pillow and download the

latest version. For PMW, go to

http://pmw.sourceforge.net/ and

download from there.

You will also need two image

files. One is a simple grey rectangle

500x400 pixels. You can use GIMP

or some other image manipulating

program to create it. Name it

default.jpg, and place it into your

source code directory along with

the database. The other is an

image of a folder for the open

image button. I got one from open

clipart and searched for the word

“folder”. I found a reasonable one

at

https://openclipart.org/detail/1 778

90/file-folder-by-thebyteman-

1 77890. Open it in GIMP, resize it

to 30x30 and save it in the same

directory as the other two files as

“open.gif”.

Above is a screenshot of what

the finished GUI will look like.

There are four main frames in the

GUI . Three on the left side and one

on the right. When we go through

the build widget process, I refer to

them as Top Frame, Middle Frame,

Bottom Frame and Side Frame. The

top frame deals with the original

image. The middle frame deals with

the processing of the image. The

bottom frame shows the original

image on the left and the

processed image on the right, and

the side frame displays the colors

and floss required. It seems from

first glance there is a lot of wasted

space here, but when you see the

program run, it doesn’t really have

that much empty space, once we

get through the processing

portion.

Now we are ready to start

working on the code. Here is our

long list of imports...

from Tkinter import *

import tkFileDialog

import tkCommonDialog

import tkMessageBox

import ttk

from PIL import
Image,ImageTk,ImageOps

import Pmw

import apsw # Database
Access

import math # Math library

import sys

From the sheer number of

imports, you can tell this is going to

be a long program. In fact, the UI

portion of the code will be over

300 lines, including comments. The

“good” news is that about 200 of

the lines of code deal with the

Tkinter portion of the program, the

actual GUI itself. The majority of

the remaining lines of code in this

portion are stubs for functions

needed for the next article.

We’ll create a class to hold all of

our UI processing code (next page,

https://github.com/python-imaging/Pillow
http://pmw.sourceforge.net/
https://openclipart.org/detail/177890/file-folder-by-thebyteman-177890


full circle magazine #86 1 1 contents ^

HOWTO - PYTHON PART 55
top right).

First, we have the class

definition and next we have the

__init__ function which we pass the

TopLevel “root” window into. We

create the TopLevel window in the

last four lines of the program.

Within the __init__ function we are

defining all the global variables and

doing some initial assignments

before we start the other

functions. The first thing we do is

create a list of Tuples that hold the

picture file formats that we need

when we call the OpenFile dialog.

The next two lines below, define

and ready the two image files we

just created (open folder GIF file,

and the grey rectangle – which will

be used as placeholders for our

images used to create the pattern.

self.openimage =
PhotoImage(file='open.gif')

self.DefaultImage
=ImageTk.PhotoImage(self.Thum
bnail("default.jpg",450,450))

Now we get into the global

definitions (middle right). If you

remember, when you use Tkinter, if

you have a widget like a text entry

box or combo box that you want to

retrieve the information selected

or entered, you define a global

variable and then assign it to a

Variable Class (BooleanVar,

DoubleVar, IntVar or StringVar).

This will then “track” changes to

the values within the widget values

so you can access them with the

.get() or .set() methods. In the next

lines of code, we create the global

variable name, then assign it to the

proper wrapper class. I put some

comments into the code to try to

help you keep track of what we are

doing.

As you can see, we are setting a

variable called OriginalFilename,

which holds the image that we

want to create the pattern from,

OriginalColorCount which holds

the number of colors in the original

image file, and OriginalSize which

holds the size in pixels of the

original image. As they say on tv...

“BUTWAIT!THERE’SMORE!”

(bottom right):

The ComboStitch variable is set

by a combobox, and handles the

stitch size of the aida that you wish

to use for your project. The

ComboSize variable is also set by a

combo box and holds the size of

the aida fabric. FabricHeight and

FabricWidth are the breakdowns

from the aida size. MaxColors is a

value from an entry box to set the

number of colors, and BorderSize is

a floating point value that specifies

the amount of unused aida for

framing.

global ProcessedColors

ProcessedColors = StringVar()

global ProcessedSize

ProcessedSize = StringVar()

global DmcColor

DmcColor = StringVar()

class XStitch:
def __init__(self, master):

self.picFormats = [
('JPEG / JFIF','*.jpg'),
('Portable Network Graphics','*.png'),
('CompuServer GIF','*.gif'),
('Windows Bitmap','*.bmp'),
('All File Types *.*','*.*'),
]

#-------------------------------------------
# Global Definitions
#-------------------------------------------
# UI Required
global OriginalFilename
OriginalFilename = StringVar()
global OriginalColorCount
OriginalColorCount = StringVar()
global OriginalSize
OriginalSize = StringVar()

global ComboStitch
ComboStitch = IntVar()
global ComboSize
ComboSize = StringVar()
global FabricWidth
FabricWidth = DoubleVar()
global FabricHeight
FabricHeight = DoubleVar()
global MaxColors
MaxColors = IntVar()
global BorderSize
BorderSize = DoubleVar()



full circle magazine #86 1 2 contents ^

HOWTO - PYTHON PART 55
The final ‘variable class’

variables are used for information

once we have processed the

original image to the desired

parameters.

The next set of globals is (top

right) used for easy access

throughout the program. For the

most part, they are either obvious

by their name, or will become

obvious once we use them. There

are three not-so-obvious variables

here. backgroundColor1 and

backgroundColor2 are tuples that

are used in the gridding process,

and the ReadyToProcess variable is

used to designate that the original

image is loaded and everything is

ready to go – just in case the user

presses the Process button too

early.

Finally we have assigned all our

globals, and now have the code

that actually creates the GUI . We

open the database, create the

menu, set up the widgets, and

finally place the widgets into the

proper places. Just to give you a

heads-up, we will be using the Grid

geometry placement manager.

More on that later.

#-------------------------

self.OpenDB()

self.MakeMenu(master)

frm =
self.BuildWidgets(master)

self.PlaceWidgets(frm)

The next portion of our code

(middle right) will set up the menu

bar. I ’ve tried to lay it out logically

so it will be easy to understand.

We define a function called

MakeMenu, and pass in the

TopLevel window. We then define

the three menu sets we will be

creating. One for File, one for

Process, and one for Help.

menu.add_cascade(label="F
ile", menu=filemenu)

menu.add_cascade(label="P
rocess",menu=process)

menu.add_cascade(label="H
elp",menu=help)

Now we set up the File

menu options (bottom right). Open

will open our image and uses a

function called “GetFileName”.

Save will create the output PDF file

and uses the FileSave function. We

add a separator and finally an Exit

function.

Now we have the Process

option and the Help functions

(next page, top right).

All of the options in the menu

bar are also available from various

buttons within the program.

Now we will make our

BuildWidgets function. This is

where we create all the widgets

that will be used on the GUI .

def
BuildWidgets(self,master):

#-------------------------------------------
global ShowGrid
ShowGrid = True
global ProcessedImage
ProcessedImage = ""
global GridImage
GridImage = ""
global backgroundColor1
backgroundColor1 = (120,)*3
global backgroundColor2
backgroundColor2 = (0,)*3
global ReadyToProcess
ReadyToProcess = False

#======================================================
# BEGIN UI DEFINITION
#======================================================

def MakeMenu(self,master):
menu = Menu(master)
root.config(menu=menu)
filemenu = Menu(menu, tearoff=0)
process = Menu(menu,tearoff=0)
help = Menu(menu,tearoff=0)

#-------------------------------------------
# File Menu
#-------------------------------------------
filemenu.add_command(label="New")
filemenu.add_command(label="Open", command=self.GetFileName)
filemenu.add_command(label="Save", command=self.FileSave)
filemenu.add_separator()
filemenu.add_command(label="Exit", command=self.DoExit)



full circle magazine #86 1 3 contents ^

HOWTO - PYTHON PART 55
self.frame =

Frame(master,width=900,height
=850)

We start with the function

(bottom right) definition, passing

in the TopLevel window (master)

and placing a frame that holds all

of our other widgets. I ’ve added

comments to help realize which

part of code deals with which

frame. We’ll deal with the top

frame first.

Assuming you remember or

refreshed your memory on Tkinter,

it should be fairly straight-forward.

Let’s look at the first label as a

discussion item.

self.label1 =
Label(self.frm1,text =
"Original Filename: ")

First, we define the name of the

widget (self.label1 =). Next we set

that variable to which widget type

we want to use; in this case Label.

Finally we set the parameters we

want to apply to that widget

starting with the parent widget

(self.frm1 ), and in this case, the

text that will show up in the label.

Now let’s take a moment to look at

the button self.btnGetFN.

self.btnGetFN =
Button(self.frm1, width=28,

image=self.openimage,

command=self.GetFileName)

First thing to notice is that this

is broken into two lines. You can

safely place everything on one

line...it is just too long to fit into a

72-character line. We’ll really pay

attention to the parameters we

use here. First the parent (frm1 ),

next the width which is set at 28.

When we use a widget that has the

option of text or an image, we have

to be careful setting the width. If it

will contain text, the width

parameter is the number of

characters it will

hold. If it is to

display an

image, it will be

set at the

number of

pixels. Finally,

we set the

command

parameter, which tells the system

what function to call when the

button is clicked.

One more thing to look at is the

textvariable parameter. This tells

us what variable will hold the

information that will be displayed

in the widget. We set these in the

__init__ function earlier. One other

thing to mention is that the frame

itself has two parameters you

might not remember. The Relief

parameter sets the border type of

#-------------------------------------------
# Process Menu
#-------------------------------------------
process.add_command(label="All",command=self.Process)
#-------------------------------------------
# Help Menu
#-------------------------------------------
help.add_command(label="Help",command=self.ShowHelp)
help.add_separator()
help.add_command(label="About",command=self.ShowAbout)

# ---------------- TOP FRAME ---------------------
self.frm1 = Frame(self.frame,width=900,height=100,bd=4,relief=GROOVE)
self.label1 = Label(self.frm1,text = "Original Filename: ")
self.entFileName = Entry(self.frm1,width=50,textvariable=OriginalFilename)
self.btnGetFN = Button(self.frm1, width=28, image=self.openimage,

command=self.GetFileName)
self.label2 = Label(self.frm1,text = "Original Colors: ")
self.lblOriginalColorCount = Label(self.frm1,text="",width=10,

textvariable=OriginalColorCount)
self.label3 = Label(self.frm1,text = "Original Size: ")
self.lblOriginalSize = Label(self.frm1,text="",width=10,

textvariable=OriginalSize)

# ---------------Middle Frame --------------------
self.frm2 = Frame(self.frame,width=900,height=160,bd=4,relief=GROOVE)
self.lbl4 = Label(self.frm2,text="Aida Stitch Size: ")
self.lbl5 = Label(self.frm2,text="Aida Fabric Size: ")
self.TCombobox1 = ttk.Combobox(self.frm2,textvariable=ComboStitch,width=8)
self.TCombobox1.bind('<<ComboboxSelected>>', self.StitchSizeSelect)
self.TCombobox1['values'] = (7,10,11,12,14,16,18,22)
self.TCombobox2 = ttk.Combobox(self.frm2,textvariable=ComboSize,width = 8)
self.TCombobox2.bind('<<ComboboxSelected>>',self.AidaSizeSelect)
self.TCombobox2['values'] = ("12x18","15x18","30")



full circle magazine #86 1 4 contents ^

HOWTO - PYTHON PART 55
the frame, which in this case is

GROOVE, and the bd parameter

sets the border width. Border

width defaults at 0 so if you want

to see the effect, you have to set

the border width (bd is a shortcut).

Now we’ll deal with the middle

frame widgets.

The last 6 lines of this section

(previous page, middle right) deal

with the two combo boxes in the

UI . Each combo box uses three

lines (the way I programmed it to

make it easy to understand). In the

first line, we set the basic

parameters. The next line, we bind

the combobox selection-changed

event to the function

StitchSizeSelect, and the last line

has a list of the values that will be

available for the pulldown.

Everything else above is pretty

“normal” stuff. Now we set our

defaults for the widgets that need

them. Again, we are using the

global variables that we set up in

the __init__ function and wrapped

to the widget variable class.

ComboStitch.set(14)

ComboSize.set("15x18")

FabricWidth.set(15)

FabricHeight.set(18)

MaxColors.set(50)

BorderSize.set(1.0)

Now we deal with the bottom

frame. This is really simple, since

we have to set up only the frame

and two labels which we will use to

hold our images.

Finally we deal with the side

frame. The side frame will hold a

ScrolledFrame from the PMW

library. It’s really easy to use and

provides a nice interface to the

information about the floss that

should be used. You can research

the ScrolledFrame on your own,

since we still have a lot to cover

here.

self.lbl6 = Label(self.frm2,text="Max Colors: ")
self.entMaxColors = Entry(self.frm2,textvariable=MaxColors,width=3)
self.lbl7 = Label(self.frm2,text="Border Size: ")
self.entBorderSize = Entry(self.frm2,textvariable=BorderSize,width = 8)
self.frmLine = Frame(self.frm2,width=6,height=80,bd=3,relief="raised")

self.lbl8 = Label(self.frm2,text=" Processed Image Colors: ")
self.lbl9 = Label(self.frm2,text="Processed Image Stitch Count: ")
self.lblProcessedColors = Label(self.frm2, width=10,textvariable=ProcessedColors,

justify=LEFT)
self.lblProcessedSize = Label(self.frm2, width=10, textvariable=ProcessedSize,

justify=LEFT)
self.btnDoIt = Button(self.frm2,text="Process",width=11,command = self.Process)
self.btnShowGrid = Button(self.frm2,text="Hide Grid", width=11,

command=self.ShowHideGrid)
self.btnCreatePDF = Button(self.frm2, text="Create PDF", width=11,

command=self.CreatePDF)

# --------------- Bottom Frame ------------------
self.frm3 = Frame(self.frame,width=450,height=450,bd=4,relief=GROOVE)
self.lblImageL = Label(self.frm3, image=self.DefaultImage,

height=400, width=400, borderwidth=2, relief=GROOVE)
self.lblImageR = Label(self.frm3, image=self.DefaultImage, height=400,

width=400,borderwidth=2, relief=GROOVE)

#---------------- Side Frame -------------------
self.frm4 = Frame(self.frame,width = 300,height=580,bd=4,relief=GROOVE)
# Create the ScrolledFrame.
self.sf = Pmw.ScrolledFrame(self.frm4,

labelpos = 'n', label_text = 'Processed Color List',
usehullsize = 1,
hull_width = 300,
hull_height = 567,)

return self.frame



full circle magazine #86 1 5 contents ^

HOWTO - PYTHON PART 55

That’s all for the widgets. Now

we have to place them. As I said

earlier, we will be using the Grid

geometry manager, rather than the

absolute or pack managers.

The Grid method places the

widgets in (you guessed it) a grid,

referenced by row and column

designations. I ’ll use the top frame

as an example (shown top right).

First we place the frame.

You can see that we place the

widget by using the

{widgetname}.grid command, then

the row and column positions.

Notice that we are telling the entry

widget to span 5 columns. Padx

and pady values will place some

extra space on both the right and

left sides (padx) or the top and

bottom (pady). The sticky

parameter is similar to a justify

command for text.

The middle frame is a bit more

complicated, but basically the same

as the top frame. You might notice

an extra frame in the middle of the

code (self.frmLine). This gives us a

nice divider between the options

section and the display section.

Since there is no horizontal or

vertical line widget, I cheated and

used a frame with a width of 6

pixels and border width of 3,

making it just look like a fat line.

ROW | Col 0 | Col 1 - Col 6 |Col 7 | Col 9 | Col 10 |
-------------------------------------------------------------------------------

0 | Label1 | entFileName |btnGenFN| Label2|lblOriginalColorCount |
1 | | Label3|lblOriginalSize |

-------------------------------------------------------------------------------

def PlaceWidgets(self,frame):
frame.grid(column = 0, row = 0)
# ---------------- TOP FRAME ---------------------
self.frm1.grid(column=0,row=0,rowspan=2,sticky="new")
self.label1.grid(column=0,row=0,sticky='w')
self.entFileName.grid(column=1,row=0,sticky='w',columnspan = 5)
self.btnGetFN.grid(column=7,row = 0,sticky='w')
self.label2.grid(column=9,row=0,sticky='w',padx=10)
self.lblOriginalColorCount.grid(column=10,row=0,sticky='w')
self.label3.grid(column=9,row=1,sticky='w',padx=10,pady=5)
self.lblOriginalSize.grid(column=10,row=1,sticky='w')

# ---------------- MIDDLE FRAME ---------------------
self.frm2.grid(column=0,row=2,rowspan=2,sticky="new")
self.lbl4.grid(column=0,row=0,sticky="new",pady=5)
self.lbl5.grid(column=0,row=1,sticky="new")
self.TCombobox1.grid(column=1,row=0,sticky="new",pady=5)
self.TCombobox2.grid(column=1,row=1,sticky="new")
self.lbl6.grid(column=2,row = 0,sticky="new",padx=5,pady=5)
self.entMaxColors.grid(column=3,row=0,sticky="new",pady=5)
self.lbl7.grid(column=2,row=1,sticky='new',padx=5)
self.entBorderSize.grid(column=3,row=1,sticky='new')
self.frmLine.grid(column=4,row=0,rowspan=2,sticky='new',padx=15)
self.lbl8.grid(column=5,row=0,sticky='new',pady=5)
self.lbl9.grid(column=5,row=1,sticky='new')
self.lblProcessedColors.grid(column=6,row=0,sticky='w')
self.lblProcessedSize.grid(column=6,row=1,sticky='new')
self.btnDoIt.grid(column=7,row=0,sticky='e',padx=5,pady = 5)
self.btnShowGrid.grid(column=7,row=1,sticky='e',padx=5,pady = 5)
self.btnCreatePDF.grid(column=8,row=0,rowspan=2,sticky='ew',padx=10)

# ---------------- BOTTOM FRAME ---------------------
self.frm3.grid(column=0,row=4,sticky="nsew")
self.lblImageL.grid(column=0,row=0,sticky="w")
self.lblImageR.grid(column=1,row=0,sticky="e")



full circle magazine #86 1 6 contents ^

HOWTO - PYTHON PART 55
The bottom frame is simple

since we have only the frame and

the two labels to hold the images.

The side frame is pretty much

the same thing, except the

ScrolledFrame allows for a frame

to be set to the interior of the

scrolled frame widget. We then

create three widgets here and

place them in their grids as column

headers. We do this since we

assigned the interior frame for the

scroll frame here and we have to

assign the parent (self.sfFrame)

after we have created it.

That’s all the hard work for now.

At this point, we will create all of

the functions that we need to get

the GUI to run, stubbing most of

them until next month. There are a

few we will go ahead and

complete, but they are fairly short.

The first function will be the

Exit option from the menu bar. It’s

under the File menu option.

def DoExit(self):
sys.exit()

The only other one is the

Thumbnail function. We need this

to fill the grey rectangles into the

labels in the bottom frame. We

pass the filename and the width

and height that we want the

thumbnail image to be.

Since this article is so long, I ’m

going to give you a list of function

names and all you have to do is

stub it out by using the pass

command. We’ll fill them in next

month. I ’ll give you the first one as

an example, but you should already

know how to do it.

def GetFileName(self):
pass

For the rest of the functions, I ’ll

just give you the def lines. Be sure

to include them all in your code.

You can see, we have a large

amount of work to do next month.

We still have four more lines to

write to finish up for this month.

This is out of our class code.

root = Tk()

root.title("Cross Stitch
Pattern Creator")

test = XStitch(root)

root.mainloop()

The first line sets up the root

TopLevel window. The next line

sets the title on the top line. The

third line instantiates our XStitch

class, and the last line starts the

main loop that shows the UI and

gives control over to it.

Well that’s a lot for this month,

but we are finally done. You can

actually run the program to see the

GUI .

As always, the code is available

on Pastebin at

http://pastebin.com/XtBawJps.

Next month we will flesh out

the code. See you then.

# ---------------- SIDE FRAME ---------------------
self.frm4.grid(column=2,row=0,rowspan=12,sticky="new")
self.sf.grid(column=0,row=1)
self.sfFrame = self.sf.interior()
self.lblch1 = Label(self.sfFrame,text=" Original")
self.lblch2 = Label(self.sfFrame,text=" DMC")
self.lblch3 = Label(self.sfFrame,text="Name/Number")
self.lblch1.grid(column=0,row=0,sticky='w')
self.lblch2.grid(column=1,row=0,sticky='w')
self.lblch3.grid(column=2,row=0,sticky="w")

def Thumbnail(self,file,hsize,wsize):
size = hsize,wsize
extpos = file.rfind(".")
outfile = file[:extpos] + ".thumbnail"
im = Image.open(file)
im.thumbnail(size)
im.save(outfile,"JPEG")
return im

def ShowHelp(self):, def ShowAbout(self):, def OpenDB(self):, def ShowHideGrid(self):
def StitchSizeSelect(self,p):, def AidaSizeSelect(self,p):, def Process(self):
def CreatePDF(self):, def OriginalInfo(self,file):, def GetColorCount(self,file):
def GetHW(self,file):, def GetHW2(self,file):, def GetColors(self,image):
def Pixelate(self,im,pixelSize):, def ReduceColours(self,ImageName):
def MakeLines(self,im,pixelSize):, def MakeLines2(self,im,pixelSize):
def Rgb2Hex(self,rgb):, def FillScrolledList(self,filename):
def GetBestDistance(self,r1,g1,b1):

http://pastebin.com/XtBawJps


full circle magazine #87 1 2 contents ^

HHOOWW--TTOO
Written by Greg D. Walters PPrrooggrraamm II nn PPyytthhoonn -- PPaarrtt 5566

W e’ve been working on a

Cross Stitch pattern

generator. Last month we did the

UI portion, and now it’s time to do

the code that does the most of the

work. Next month we will start

working on the PDF file output

portion.

We’ll work on the menu items

first. The code is shown below.

The global ReadyToProcess

variable is used to make sure that if

the user presses the Process

button, the system doesn’t try to

process things without anything to

process. We use the tkFileDialog

askopenfilename built-in dialog

routine to get the filename of the

original image. We then get the

number of colors in the original

image as well as the width and

height. We save those values and

display them in the GUI . We then

open the image and create a

thumbnail image to display in the

left image in the bottom frame.

See the text box to the right.

Next we do the ShowHideGrid

function. This simply exchanges

two images in the right image label

based on the global variable

ShowGrid. If False, we change the

text on the show/hide button, then

set the ShowGrid variable to true

and set the image to the one with

the grid. Otherwise we change the

text on the show/hide button to

“Show Grid”, set the ShowGrid

variable to False and put up the

ungridded image. Code is on the

next page, top left.

The StitchSizeSelect function is

fired whenever the stitch size

combobox is changed. We get the

value from the combo box and

assign it to a local variable.

def StitchSizeSelect(self,p):

selection = ComboStitch.get()

def GetFileName(self):
global ReadyToProcess
#---------------------------------
fileName = tkFileDialog.askopenfilename(parent=root,filetypes=self.picFormats ,title="Select File to open...")

OriginalFilename.set(fileName)
OriginalColorCount.set(self.GetColorCount(fileName))
OriginalSize.set(self.GetHW(fileName))
masterimage=Image.open(fileName)
masterimage.thumbnail((400,400))
self.img = ImageTk.PhotoImage(masterimage)
self.lblImageL['image'] = self.img
ReadyToProcess = True

The FileSave menu option will simply call the CreatePDF routine, once it’s finished.

def FileSave(self):
self.CreatePDF()

We’ll stub out the ShowHelp and ShowAbout routines with a dialog box saying that
those options are not yet available.

def ShowHelp(self):
tkMessageBox.showinfo(title="Help",message='Sorry,

but help is not yet available.')

def ShowAbout(self):
tkMessageBox.showinfo(title="About",message='Sorry,

but the About function is not yet available.')

We’ve written the OpenDB routine a dozen times before, so you should know what it
does.

def OpenDB(self):
global connection
global cursor
#---------------------------------
connection = apsw.Connection("floss.db3")
cursor = connection.cursor()



full circle magazine #87 1 3 contents ^

HOWTO - PYTHON PART 56

The AidaSizeSelect function

(top right) is very similar to the

StitchSizeSelect function. We set

the FabricWidth and FabricHeight

globals based on the selection on

the combo box. We also default to

30x30 if they select 30.

We have a variable called

ReadyToProcess (below) just in

case the user tries to run the

process function before the image

is loaded.

We pixelate the original file to a

5x5 pixel matrix This allows us to

group that 5x5 matrix to a single

color. We then reduce the colors,

get the width and height of the

processed image and set the size

so the user can see how big the

resulting image will be.

# Place image

self.im2=Image.open(Reduced)

self.im2.thumbnail((400,400))

self.img3 =
ImageTk.PhotoImage(self.im2)

self.lblImageR['image'] =
self.img3

self.ProcessedImage =
'im1.png'

The above set of code places

the processed image into the

image that will hold the processed

image. The next set of code will

create a grid so that the user will

have the grid to do the cross

stitching.

self.MakeLines(Reduced,5)

self.MakeLines2('output.png',
50)

self.im2 =
Image.open('output2.png')

self.im2.thumbnail((400,400))

self.img3 =
ImageTk.PhotoImage(self.im2)

self.lblImageR['image'] =
self.img3

self.FillScrolledList('output
.png')

def ShowHideGrid(self):
global ShowGrid
#---------------------------------
if ShowGrid == False:

self.btnShowGrid['text'] = 'Hide Grid'
ShowGrid = True
self.im2=Image.open(self.GridImage)
self.im2.thumbnail((400,400))
self.img3 = ImageTk.PhotoImage(self.im2)
self.lblImageR['image'] = self.img3

else:
self.btnShowGrid['text'] = 'Show Grid'
ShowGrid = False
self.im2=Image.open(self.ProcessedImage)
self.im2.thumbnail((400,400))
self.img3 = ImageTk.PhotoImage(self.im2)
self.lblImageR['image'] = self.img3

def AidaSizeSelect(self,p):
selection = ComboSize.get()
if selection != "30":

pos = selection.find("x")
width = int(selection[:pos])
height=int(selection[pos+1:])

else:
width = 30
height = 30

FabricWidth.set(width)
FabricHeight.set(height)

def Process(self):
global ReadyToProcess
#---------------------------------
if ReadyToProcess == False:

tkMessageBox.showinfo(title="ERROR...",message='You must load an original imaage first.')
else:

newimage = self.Pixelate(OriginalFilename.get(),5)
Reduced = self.ReduceColors(newimage)
W,H = self.GetHW2(Reduced)
siz = "{0}x{1}".format(W/5,H/5)
ProcessedSize.set(siz)



full circle magazine #87 1 4 contents ^

HOWTO - PYTHON PART 56

self.GridImage =
'output2.png'

We stub the CreatePDF

function until we finish the PDF

function next month.

def CreatePDF(self):

tkMessageBox.showinfo(title="
Create PDF",message='Sorry,
but the Create PDF function
is not yet available.')

The OriginalInfo() routine gets

and sets variables based on the

original image format, size and

mode.

def OriginalInfo(self,file):
im = Image.open(file)
imFormat = im.format
imSize = im.size
imMode = im.mode

self.size = imSize
self.imformat = imFormat
self.immode = imMode

The GetColorCount function

uses the .getcolors method to get

the number of colors in the image

file. We have to use 1 600000 as the

maxcolors parameter because if

the image contains more than 256

colors (or whatever is in the

parameter, the method returns

‘None’. This function is similar to

the GetColors function except the

GetColors works with an already

opened image file. If you use

GetColorCount, you have to pass

an unopened file.

def GetColorCount(self,file):
im = Image.open(file)
numColors =

im.getcolors(1600000)
self.colors =

len(numColors)
return self.colors

The next two functions return

the height and width of the image

file in pixels. The difference

between the two is that GetHW

returns a string like 1 024x768 and

GetHW2 returns two integers.

def GetHW(self,file):

im = Image.open(file)
tmp =

"{0}x{1}".format(im.size[0],i
m.size[1])

return tmp

def GetHW2(self,file):
im = Image.open(file)
return

im.size[0],im.size[1]

GetColors will get the number

of colors in the passed image file.

We use 1 .6 million colors as the

parameter, because the

image.getcolors() routine defaults

to 0 over color count over 256.

def GetColors(self,image):
numColors =

image.getcolors(1600000)
colors = len(numColors)

The Pixelate function (above)

takes two parameters, image

filename (im) and the size of pixels

you want. The work is done by the

image.resize method. I found this

routine on the web in a number of

places. In this instance we will be

passing a pixel size of 5, which

works well for Cross Stitch

projects. We also tell the method

to take the color of the nearest

neighbor. This returns a new

image, which we save as a file and

return the filename.

The ReduceColors routine

(below) basically uses the

Image.ADAPTIVE pallet so we can

def Pixelate(self,im,pixelSize):
image = Image.open(im)
self.GetColors(image)
image = image.resize((image.size[0]/pixelSize, image.size[1]/pixelSize), Image.NEAREST)
image = image.resize((image.size[0]*pixelSize, image.size[1]*pixelSize), Image.NEAREST)
self.GetColors(image)
#image.show()
image.save('newimage.png')
return 'newimage.png'

def ReduceColors(self,ImageName):
#Reduce colors
numcolors=MaxColors.get()
image = Image.open(ImageName)
output = image.convert('P', palette=Image.ADAPTIVE, colors=numcolors)
x = output.convert("RGB")
self.GetColors(x)
numcolors = x.getcolors()
ProcessedColors.set(len(numcolors))
x.save('im1.png')
return 'im1.png'



full circle magazine #87 1 5 contents ^

HOWTO - PYTHON PART 56
get a much smaller number of

colors.

There are two MakeLines (top

right) routines. They create the

grid we spoke of earlier.

Rgb2Hex() returns a hex value

of the RGB value that is passed in.

We will use this to try to compare

the colors in the database with the

colors in the image.

def Rgb2Hex(self,rgb):
return '#%02x%02x%02x' %

rgb

The ScrollList (below) on the

right side holds the colors that will

be used to get the proper floss

colors. We simply create labels to

hold the colors (visual) and text.

This (next page) is the routine

that we use to try to find the

closest match between the color in

the image and the color in the

database. There are many different

algorithms on the web that you can

look at and try to understand the

logic behind it. It gets rather

complicated.

Ok. That’s all for this month.

Next time, we will start creating

the PDF output file so the cross

stitcher has something to work

def MakeLines(self,im,pixelSize):
global backgroundColor1
#---------------------------------
image = Image.open(im)
pixel = image.load()
for i in range(0,image.size[0],pixelSize):

for j in range(0,image.size[1],pixelSize):
for r in range(pixelSize):

pixel[i+r,j] = backgroundColor1
pixel[i,j+r] = backgroundColor1

image.save('output.png')

def MakeLines2(self,im,pixelSize):
global backgroundColor2
#---------------------------------
image = Image.open(im)
pixel = image.load()
for i in range(0,image.size[0],pixelSize):

for j in range(0,image.size[1],pixelSize):
for r in range(pixelSize):

try:
pixel[i+r,j] = backgroundColor2
pixel[i,j+r] = backgroundColor2

except:
pass

image.save('output2.png')
def FillScrolledList(self,filename):

im = Image.open(filename)
numColors = im.getcolors()
colors = len(numColors)
cntr = 1
for c in numColors:

hexcolor = self.Rgb2Hex(c[1])
lblColor=Label(self.sfFrame,text=" ",bg=hexcolor,relief=GROOVE)
lblColor.grid(row = cntr, column = 0, sticky = 'nsew',padx=10,pady=5)
pkID = self.GetBestDistance(c[1][0],c[1][1],c[1][2])
sql = "SELECT * FROM DMC WHERE pkID = {0}".format(pkID)
rset = cursor.execute(sql)
for r in rset:

hexcolor2 = r[6]
dmcnum = r[1]
colorname = r[2]

lblColor2=Label(self.sfFrame,text=" ",bg="#" + hexcolor2,relief=GROOVE)
lblColor2.grid(row = cntr,column = 1,sticky = 'w',padx=5,pady=5)
lblColor3=Label(self.sfFrame,text = str(dmcnum) + "-" + colorname,justify=LEFT)
DmcColor.set(dmcnum)
lblColor3.grid(row = cntr, column = 2,sticky = "w",padx=1,pady=5)
cntr += 1



full circle magazine #87 1 6 contents ^

Greg Walters is owner of RainyDay
Solutions, LLC, a consulting company
in Aurora, Colorado, and has been
programming since 1 972. He enjoys
cooking, hiking, music, and spending
time with his family. His website is
www.thedesignatedgeek.net.

HOWTO - PYTHON PART 56
with.

As always, the code is available

on PasteBin at

http://pastebin.com/DmQ1 GeUx.

We will continue in the next month

or so. I ’m facing some surgery soon

so I ’m not sure how soon I will be

able to sit for any long periods of

time. Until then, enjoy.

def GetBestDistance(self,r1,g1,b1):
# dist = math.sqrt(((r1-r2)**2) + ((g1-g2)**2) + ((b1-b2)**2))
sql = "SELECT * FROM DMC"
rset = cursor.execute(sql)
BestDist = 10000.0
for r in rset:

pkID = r[0]
r2 = r[3]
g2 = r[4]
b2 = r[5]
dist = math.sqrt(((r1-r2)**2) + ((g1-g2)**2) + ((b1-b2)**2))
if dist < BestDist:

BestDist = dist
BestpkID = pkID

return BestpkID

http://www.thedesignatedgeek.net


full circle magazine #91 1 1 contents ^

HHOOWW--TTOO
Written by Greg Walters PPrrooggrraamm II nn PPyytthhoonn PPtt.. 5577

CROSS STITCH PATTERN

GENERATOR - PART 4 -
UNDERSTANDING PYFPDF

S orry for missing so many

months. I still can’t sit for long

periods of time, so this article

might be shorter than what you are

used to. My original plan was to

jump right into the PDF output

portion of the program, but there

is so much to understand about

this library, I decided to use this

installment as a tutorial on pyfPDF

and then tackle the PDF output

next time. So let’s get started.

FPDF stands for Free PDF. A

VERY minimal example would be as

follows:

from fpdf import FPDF

pdf = FPDF()

pdf.add_page()

pdf.set_font(‘Arial’,’B’,16)

pdf.cell(40,10,’Hello From
Python’)

pdf.output(‘example1.pdf’,’F’
)

The first line imports the library

file. The next creates an instance of

the FPDF object. We use the

default values for this example,

which are:

• Portrait

• Measure Unit = Millimeters.

• Format = A4

If you need to use ‘US’

standards, you could do it this way:

pdf=FPDF(‘P’,’in’,’Letter)

Notice the parameters are

FPDF(orientation, units, format):

• Possible values for orientation are

“P” for Portrait and “L” for

Landscape.

• Possible values for units are: ‘pt’

(poiints) , ‘mm’ (millimeter) , ‘cm’

(centimeter) , ‘in’ (inches).

• Possible values for format are:

‘A3’, ‘A4’, ‘A5’, ‘Letter’, ‘Legal’ or a

tuple containing the width and

height expressed in the unit given

in the unit parameter.

The third line creates a page to

enter data into. Notice a page is

not automatically created when we

create the instance of the object.

The origin of the page is the upper-

left corner, and the current

position defaults to 1 cm from the

margin. The margin can be changed

with the SetMargins function.

Before you can actually print

any text, you must call

pdf.set_font() to define a font. In

the line above, we are defining

Arial Bold 1 6 point. Standard valid

fonts are Arial, Times, Courier,

Symbol and ZapfDingbats.

Now we can print a cell with the

pdf.cell() call. A cell is a rectangular

area, possibly framed, which

contains some text. Output is at

the current position which is

specified (40,1 0 cm) in the above

example. The parameters are:

pdf.cell(Width, Height, text,
border, line, align, fill,
link)

Where:

• Width is length of cell. If 0, width

extends to the right margin.

• Height is the height of the cell.

• Text is the string of text you want

to print.

• Border is either 0 (no

border(default)) , 1 is border, or a

string of any or all of the following

characters: "L","T","B","R"

• Line is where the current position

should go after printing the text.

Values are 0 (to the right) , 1 (to the

beginning of the next line, 2

(below). Default is 0, and putting 1

is equivalent to putting 0 and

calling ln() immediatly after.

• Align allows to center or align the

text within the cell. Values are "L"

(left) , "C" (center) , "R" (right) .

• Fill sets the background to be

painted (true) or transparent

(false). Default is false.

• Link is a url or identifier returned

by addlink() .

Finally, the document is closed

and sent to the file with Output.

The parameters are

fpdf.output(name,dest) . If file is

not specified, the output will be

sent to the browser. Options for

destination are "I" (inline to

browser(default)) , "F" (local file

given by name), "D" (to the

browser and force a file download

with the name passed), and "S"

(return the document as a string).



full circle magazine #91 1 2 contents ^

Greg Walters is owner of RainyDay
Solutions, LLC, a consulting company
in Aurora, Colorado, and has been
programming since 1 972. He enjoys
cooking, hiking, music, and spending
time with his family. His website is
www.thedesignatedgeek.net.

HOWTO - PROGRAM IN PYTHON

Since we will be sending our

cross stitch images to the pdf file,

we will have to understand the

image function.

The function is called like this:

pdf.image(name,x=None,y=None,
w=0,h=0,type="",link="")

This function puts the image.

The size it will take on the page can

be specified in different ways:

• Explicit width and height or

• One explicit dimension

Supported formats are JPEG,

PNG, and GIF. If you wish to use GIF

files, you must get the GD

extension.

For JPEGs, all flavors are

allowed:

• gray scale

• true colours (24 bits)

• CMYK (32 bits)

For PNGs, the following are

allowed:

• gray scales on at most 8 bits (256

levels)

• indexed colors

• true colors (24 bits)

Note: interlacing is not allowed,

and if you are using a version of

FPDF prior to 1 .7, Alpha channel is

not supported.

I stole this example (shown

right) from the pyFPDF tutorial.

You have been around long

enough that you should be able to

look at the program and

understand what is going on. But in

this example the line we are

REALLY interested in is the fourth

line:

this.image('img1.png',10,8,33
)

In this instance, we are calling

the image function with the

filename, the x position of where

the picture will go on the page, the

y position, and the width of the

picture.

Now that you have a gross

grasp of the library, we will start

our PDF code next time.

Until then, have a good month.

See you soon.

from fpdf import FPDF

class PDF(FPDF):
def header(this):

# Logo - replace with a small png of your own
this.image('img1.png',10,8,33)
# Arial bold 15
this.set_font('Arial','B',15)
# Move to the right
this.cell(80)
# Title
this.cell(30,10,'Title',1,0,'C')
# Line break
this.ln(20)

# Instantiation of inherited class
pdf=PDF()
pdf.alias_nb_pages()
pdf.add_page()
pdf.set_font('Times','',12)
for i in range(1,41):

pdf.cell(0,10,'Printing line number '+str(i),0,1)
pdf.output('example2.pdf','F')

http://www.thedesignatedgeek.net


full circle magazine #95 1 5 contents ^

HHOOWW--TTOO
Written by Greg D. Walters PPrrooggrraamm iinn PPyytthhoonn -- PPaarrtt 5577

F irst, let me thank all the

readers who sent me emails of

hope and wishes for a quick

recovery. They were very kind and

helpful. I also want to thank

Ronnie, our wonderful editor, for

his support and patience during

that painful period. I still have

issues with sitting for long periods

of time, so this is being done over

the course of a number of days, so

I hope the continuity that I ’m

trying for works. Now on with “the

show”…

Not too long ago, I was walking

to the time clock and the General

Manager of my “day job” called me

into his office. Hoping it was just a

“how’s it going” talk, I went in and

sat down. He then started the

meeting with “I ’m having a

problem with my spreadsheet

program, and was hoping you

could help me”.

As my vision darkened and the

three-note ominous orchestral

string hits “Da Da DAAAAAAAAA”

that we all know from the horror

flicks of the 70’s and 80’s rang

through my mind, rather than

running screaming from the room, I

innocently asked what was wrong.

He responded that there was

something wrong with one of the

macros and “the thing just quits in

the middle of the calculations”. As I

whipped out my white cowboy hat,

I said in my best hero voice “Don’t

worry citizen. We’ll have you up

and running in no time.” Within a

short while, I discovered the reason

the spreadsheet was

unceremoniously crashing was that

one cell in one of 35 workbooks

was getting a divide by zero error

due to an expected value not being

entered in another cell in yet

another one of the 35 workbooks.

Let me make this perfectly clear, it

was not my boss’s fault. All he had

asked for was a simple way to get

the higher-up values from the data.

(The previous two sentences have

absolutely nothing to do with the

fact that my boss may read this

article! Or maybe it does.)

As I walked back to my work

area, brushing the spurious bits of

computer code from my white hat,

I realized that this would be an

excellent teaching moment. So,

here we are. But first, let’s revert

back to 1 979 when Apple

introduced Visicalc. That was the

first “Free Form Calculation type

system” to really make a hit in the

marketplace. While there were

many bugs in the software, the

world loved the idea and clones

(bugs and all) began to pop up on

other computer systems, like the

Commodore Pet and other Apple

competitors (including Microsoft in

1 981 with a program called

Multiplan). Finally, in 1 983, a

company called Lotus

Development Corp. introduced

Lotus 1 -2-3. While very close to

Visicalc in many aspects, including

the menu structure, it was written

completely in x86 assembly

language, which made it very fast,

and many of the bugs of Visicalc

were fixed. Lotus 1 -2-3 was so

popular that it became a common

benchmark to test a machine for

“PC Compatibility”.

The advent of the Free Form

Calculation systems, allowed the

“normal” person to deal with

numbers in a way that previously

was in the realm of the

programmer. Almost anyone could,

in a few hours or so, make sense of

numbers, create charts and graphs,

and share that information with

coworkers. Shortly after that, the

ability to automate some portions

of the spreadsheet through

Macros and Basic-like embedded

languages gave these non-

programmer users even more

power over their destiny. They

could get the answers themselves,

and pretty charts and graphs as

well, without having to wait in the

queue for I .T. assistance. However,

as we all learned from Peter

Parker’s uncle Ben…

WITH GREAT POWER, COMES
GREAT RESPONSIBILITY.

Soon the spreadsheet was

taken into areas that were better

suited for databases than

spreadsheets. We now had

workbooks upon workbooks that

relied on other workbooks, and if

one little number along the way

didn’t happen to get updated…

well, we had the old “house of

cards” effect.



full circle magazine #95 1 6 contents ^

HOWTO - PYTHON

While I don’t think that every

spreadsheet is evil, there are some

(read this to say ‘many’) that

should have been converted to

databases many years ago. They

just became too large and

unwieldy for their own good. If

someone had just sat down with

the programmers and said, “Please

help”, the world would be a kinder,

gentler place.

Now as I step down from my

soapbox, we come to the real

reason for this month’s article.

Every good Python programmer

should have a way to deal with

spreadsheets in their arsenal of

tools. You never know when you

will be called upon to pull data

from a spreadsheet and

manipulate it. While there are

many ways to get data from

spreadsheets like using CSV files,

which has its own drawbacks,

sometimes you need to read and

write directly from and to a ‘live’

spreadsheet. After looking around,

I settled on a very nice library to

access my boss’s problematical

spreadsheet.

We will be adding the library

called XLRD, which one might

imagine stands for eXceL ReaD.

This library allows us to easily read

data from Excel files (.xls , .xlsx and

.xlsm) from versions 2.0 onward.

Let’s create an excel

spreadsheet that we can use to

examine the functionality of XLRD.

Either open excel, or openoffice or

libreoffice calc. In the first column

(A), enter the numbers 1 to 5 going

down. In the next column (B), enter

6 to 1 0. It should look something

like this:

Now save the spreadsheet as

“example1 .xls” in the folder you

will use to save the test code. This

way, we won’t have to worry about

paths.

Now download and install XLRD

(https://pypi.python.org/pypi/xlrd).

We can use it like is shown below.

Save the file as example1 .py in

the same folder as the

spreadsheet. Since the code is so

short, we will simply discuss it

here. Of course, the first line

imports the library. Then we create

a function called OpenFile and

pass the name (and path if needed)

of the spreadsheet to the function.

Now we call the

open_workbook method and get

back a ‘book’ object. Then we use

the nsheets attribute to return the

number of ACTIVE workbooks. We

can also get the name of the

workbooks. In this case, they are

the default. We use the

sheet_by_index method to get

Sheet1 into the first_sheet object.

Now we can start getting data. We

get the information from the cell

at position (1 ,1 ) which translates

to cell position B2 (it’s Zero based,

so cell A1 would be (0,0)) . We print

the data from there, both what the

cell contains and the value, so we

could use it in a calculation if we

wish.

That was really easy, wasn’t it?

Now, let’s do something a bit more

useful. Enter the code shown on

the next page (top right) and save

it as ‘example2.py’. This example

will print out the contents of the

workbook.

Since we already used the first

four lines of code in the first

import xlrd
def OpenFile(path):

# Open and read excel file
book = xlrd.open_workbook(path)
# Get number of active workbooks
print "Number of workbooks: ",book.nsheets
# Get the names of those workbooks
print "Workbook names: ",book.sheet_names()
first_sheet = book.sheet_by_index(0)
cell = first_sheet.cell(1,1)
print "Cell at 1,1: ",cell
print "Cell Value at 1,1: ",cell.value

if __name__ == "__main__":
path = "example1.xls"
OpenFile(path)

https://pypi.python.org/pypi/xlrd


full circle magazine #95 1 7 contents ^

HOWTO - PYTHON

example, we’ll skip them. By using

the ‘sheet.nrows’ and ‘sheet.ncols’

attributes, we get the number of

rows and columns. This can be

helpful, not only so we know what

we are dealing with; we can write

“generic” routines that use those

values in our calculations as you

will see. In fact, we use ‘rows’ in a

for loop to obtain each row’s

information.

Notice the line that has

‘first_sheet.row_slice’. This gets a

block of cells of a given row. The

syntax is as follows:

X =
first_sheet.row_slice(RowInQu
estion, Start_Column,
End_Column)

So we have used the number of

rows and the number of columns in

calculations. The output from our

program should look something

like this…

There are 5 rows in this
workbook.
There are 2 cols in this
workbook.
[number:1.0, number:6.0]
[number:2.0, number:7.0]
[number:3.0, number:8.0]
[number:4.0, number:9.0]
[number:5.0, number:10.0]
Press any key to continue . .
.

We’ll do one more example

before we end this month’s article.

Go to the spreadsheet and in

column C put some dates. Here’s

what my spreadsheet looks like

now:

You can use any dates you like.

Now let’s re-run our example2.py

program. Here is the output from

mine.

There are 5 rows in this
workbook.
There are 3 cols in this
workbook.
[number:1.0, number:6.0,
xldate:41649.0]
[number:2.0, number:7.0,
xldate:42109.0]
[number:3.0, number:8.0,
xldate:31587.0]
[number:4.0, number:9.0,
xldate:23284.0]
[number:5.0, number:10.0,

xldate:36588.0]
Press any key to continue ...

Well, that’s not what we

expected. It seems that excel holds

dates as a value that is simply

formatted for whatever we ask it

to. This might be helpful for

sorting and calculations, but, for

showing the actual data, this won’t

do. Luckily, the writers of the

library already thought of this.

Delete the line that says “print

cells” and replace it with the code

shown below.

import xlrd
def OpenFile(path):

book = xlrd.open_workbook(path)
first_sheet = book.sheet_by_index(0)

# Get the number of rows in this workbook
rows = first_sheet.nrows

# get the number of columns in this workbook
cols = first_sheet.ncols
print "There are %d rows in this workbook." % rows
print "There are %d cols in this workbook." % cols
for r in range(0,rows):
cells = first_sheet.row_slice(rowx=r,start_colx=0,end_colx=cols)
print cells

if __name__ == "__main__":
path = "example1.xls"
OpenFile(path)

for c in cells:
if c.ctype == xlrd.XL_CELL_DATE:
date_value = xlrd.xldate_as_tuple(c.value,book.datemode)
dt = str(date_value[1]) + "/" + str(date_value[2]) + "/" + str(date_value[0])
print dt
else:
print c.value



full circle magazine #95 1 8 contents ^

Greg Walters is owner of RainyDay
Solutions, LLC, a consulting company
in Aurora, Colorado, and has been
programming since 1 972. He enjoys
cooking, hiking, music, and spending
time with his family. His website is
www.thedesignatedgeek.net.

HOWTO - PYTHON

Here, we go through each cell in

the cells list and check the type of

the cell to see if it is considered a

XL_CELL_DATE. If it is, then we

convert it to a tuple. It is stored as

YYYY,MM,DD. We simply pretty it

up to print it as MM/DD/YYYY.

Here is the output of our new

program…

There are 5 rows in this
workbook.
There are 3 cols in this
workbook.
1.0
6.0
1/10/2014
2.0
7.0
4/15/2015
3.0
8.0
6/24/1986
4.0
9.0
9/30/1963
5.0
10.0
3/3/2000
Press any key to continue ...

Just for your information, there

is a library from the same

wonderful people called XLWT,

which allows you to write to excel

files. There is a wonderful tutorial

and documentation on these two

libraries at http://www.python-

excel.org/.

The source code for

example3.py is on pastebin at

http://pastebin.com/bWz7beBw.

Hopefully, I ’ll see you next

month.

PYTHON SPECIAL EDITIONS:

http://fullcirclemagazine.org/issue-py01 / http://fullcirclemagazine.org/issue-py02/

http://fullcirclemagazine.org/python-
special-edition-issue-three/

http://fullcirclemagazine.org/python-
special-edition-volume-four/

http://fullcirclemagazine.org/python-
special-edition-volume-five/

http://fullcirclemagazine.org/python-
special-edition-volume-six/

http://www.thedesignatedgeek.net
http://www.python-excel.org/
http://pastebin.com/bWz7beBw
http://fullcirclemagazine.org/issue-py01/
http://fullcirclemagazine.org/issue-py02/
http://fullcirclemagazine.org/python-special-edition-issue-three/
http://fullcirclemagazine.org/python-special-edition-volume-four/
http://fullcirclemagazine.org/python-special-edition-volume-five/
http://fullcirclemagazine.org/python-special-edition-volume-six/


full circle magazine #1 00 21 contents ^

HHOOWW--TTOO
Written by Greg. D. Walters PPrrooggrraamm iinn PPyytthhoonn PPtt .. 5599

F irst, let me say Happy 1 00 to
Ronnie and the crew. It’s a

privilege to be part of this
milestone.

This time I thought that I ’d
share some information on my new
obsession. I ’ve started repairing
and building stringed musical
instruments like guitars and
violins. Believe it or not, there is a
lot of math involved in musical
instruments. Today, we will look at
some of the math involved with
the length of strings and where
the frets should be placed on the
fretboard.

Take a look at the picture of the
guitar. I annotated various items in
the image. The important things to
look at are the Nut near the top of
the fingerboard, the Frets, the
Bridge near the bottom, and the
white “line” within the bridge
called the Saddle. The purpose of
the frets is to create a perfect spot
to change the length of the string
to create a note that is in tune. The
positions of these frets are not
arbitrary, but mathematically
determined.

Now, the physics of vibrating
strings tells us that if you half the
vibrating string length of a
theoretically perfect string, you

will double the frequency of the
vibrations. In the case of a guitar,
this string length is between the
nut and the saddle. This distance is
referred to the Scale Length of the
guitar. The half-point that allows
for the doubled frequency is fret #
1 2. If correctly done, just by lightly
placing your finger on the string at
this location, you get a pleasing
tone. There are a few other
positions that this will happen, but
the 1 2th fret should be the perfect
location for this doubling, making
the note go up one octave.

Different scale lengths will
create different feel and tones. For
example, guitars like the Fender
Stratocasters® have a scale length
of 25½”, which produces a rich and
strong bell-like tone. On the other
hand, Gibson guitars often use a
scale length of 24¾”. This creates a
lower string tension which makes
an easier playing feel and a warmer
tone. Other guitar manufacturers
decided that a scale length of 25”
makes a clearer tone than either of
the other two “standard” scale
lengths.

So with the ability of a guitar
maker to come up with their own
scale length, the spacing of the
frets will have to be recalculated.
This is something that luthiers
(guitar makers) have been dealing
with for hundreds of years.

In the past, there was a
technique called the rule of 1 8
which involves successively
dividing the scale length minus the
offset to the previous fret by 1 8.
While this kind of worked, the
tones were off, the higher up the
fingerboard the player went. These
days, we use a different constant.
This constant is 1 7.81 7. By using
this “new” constant, the 1 2th fret
or octave is at the exact position to
be half the scale length of the
string.

Now, these calculations are
easy enough to do by paper and
pencil or even a simple calculator,
it’s just as easy to create a Python
program to do the calculations for
us in just a second. Once you have
the positions, you simply saw a slot
for the fret at the correct positions
and then hammer in the frets.



full circle magazine #1 00 22 contents ^

HOWTO - PYTHON

So, let’s take a look at the
program.

We want to create a program
that will prompt for the scale
length of the guitar (or bass) , do
the calculations and then print out
the distances. The calculations and
all returned lengths are all in
inches, so all our friends that use
metric measurements, please add
the proper conversion calculations.
After almost 5 years, you should be
able to do this with ease.

We don’t need to import any
libraries for this so we will start off
by defining a couple of variables.

ScaleLength = 0

CumulativeLength = 0

Next we will create a routine
(top right) that will be called
repeatedly as we “travel down” the
fingerboard. We will pass two
values into this routine. One is the
scale length and the other is the
cumulative distance from the nut
to the previous fret.

In this routine, we take the
scale length, subtract the
cumulative distance and assign
that value to BridgeToFret. We

then take that value, divide it by
our constant (1 7.81 7) , add back in
the cumulative distance and then
return that value to our calling
routine. Remember, we could
simply have returned the
calculated value without assigning
it to a variable name. However, if
we ever want to inspect the
calculated values, it’s easier to do
if we assign the value before we
return it.

Now we will make our worker
routine. We’ve done this kind of
thing many times in the past. We
will pass it the scale length and it
will loop for up to 24 frets
(range(1 ,25)) . Even if your project
has less than 24 frets, you will have
the correct positions of all the
frets you do have. I chose 24
because that’s the maximum of
frets for most guitars. When we
get into the loop, we check the
fret number (x) and if it is 1 , we
pass the cumulative length as 0,

since this is the first calculation.
Otherwise, we pass the last
cumulative length in and it
becomes the result from the
calculation routine. Finally, we
print each fret number followed by
a formatted version of the
cumulative length.

Finally, we have the code that
does the prompting for the scale
length. I ’m sure you will remember
the format for the raw_input
routine, since we have used it so
many times before. Something you
might not remember: that
raw_input always returns a string,
so when we pass it off to the
DoWork routine, we have to pass it
as a floating point number so the
routine will work correctly. Of
course, we could simply pass it as a
string, but we would have to deal

with the conversion in the DoWork
routine.

ScaleLength =
raw_input(“Please enter Scale
Length of guitar -> “)

DoWork(float(ScaleLength))

You might wonder what good
this program will do if you aren’t
going to build a guitar from
scratch. It can be valuable when
you're looking at buying a used
guitar or trying to tweak a guitar
with a floating bridge. Also, if you
are a guitar player, this might have
been something you didn’t know
about guitars.

Of course, the code is available
from pastebin at
http://pastebin.com/A2RNECt5.

def CalcSpacing(Length,NTF):
BridgeToFret = Length-NTF
NutToFret = (BridgeToFret/17.817) + NTF
return NutToFret

def DoWork(ScaleLength):
CumulativeLength = 0
for x in range(1,25):

FretNumber = x
if FretNumber == 1:

CumulativeLength = CalcSpacing(ScaleLength,0)
else:

CumulativeLength = CalcSpacing(ScaleLength,CumulativeLength)
print(“Fret=%d,NutToFret=%.3f” % (FretNumber,CumulativeLength))

http://pastebin.com/A2RNECt5


29 contents ^

HHOOWW TTOO CCOONNTTRRIIBBUUTTEE
Ful l Circle Team

Edit or - Ronnie Tucker

ronnie@fullcirclemagazine.org

Webmast er - Lucas Westermann

admin@fullcirclemagazine.org

Edit ing & Proof reading

Mike Kennedy, Gord Campbell, Robert

Orsino, Josh Hertel, Bert Jerred, Jim

Dyer and Emily Gonyer

Our thanks go to Canonical, the many

t ranslat ion teams around the world

and Thorst en Wilms for the FCM logo.

FULL CIRCLE NEEDS YOU!
A magazine isn't a magazine without art icles and Full Circle is no

except ion. We need your opinions, desktops, stories, how-to's,

reviews, and anything else you want to tell your fellow *buntu users.

Send your art icles to: art icles@fullcirclemagazine.org

We are always looking for new art icles to include in Full Circle. For help and advice

please see the Of f icial Ful l Circle St yle Guide: ht tp:/ /url.fullcirclemagazine.org/75d471

Send your comment s or Linux experiences to: let ters@fullcirclemagazine.org

Hardware/sof tware reviews should be sent to: reviews@fullcirclemagazine.org

Quest ions for Q&A should go to: quest ions@fullcirclemagazine.org

Deskt op screens should be emailed to: misc@fullcirclemagazine.org

... or you can visit our sit e via: fullcirclemagazine.org

Please note:
Special editions are 

compiled from originals

and may not work with 

current versions.

EPUB Format - Most edit ions have a link to the epub f ile

on that issues download page. If you have any problems

with the epub f ile, email: mobile@fullcirclemagazine.org

Issuu - You can read Full Circle online via Issuu:

ht tp:/ / issuu.com/fullcirclemagazine. Please share and rate

FCM as it helps to spread the word about FCM and Ubuntu.

Magzst er - You can also read Full Circle online via

Magzster: ht tp:/ /www.magzter.com/publishers/Full-Circle.

Please share and rate FCM as it helps to spread the word

about FCM and Ubuntu Linux.

Get t ing Ful l Circle Magazine:

For t he Ful l Circle Weekly News:

You can keep up to date with the Weekly News using the RSS

feed: ht tp:/ / fullcirclemagazine.org/ feed/podcast

Or, if your out and about , you can get the Weekly News via

St itcher Radio (Android/ iOS/web):

ht tp:/ /www.st itcher.com/s?f id=85347&ref id=stpr

and via TuneIn at : ht tp:/ / t unein.com/radio/Full-Circle-Weekly-

News-p855064/

Special Editions - Jonathan Hoskin


