
THE INDEPENDENT MAGAZINE FOR THE UBUNTU LINUX COMMUNITY

PROGRAMMING SERIES SPECIAL EDITION

 PROGRAMPROGRAM
 IN PYTHONIN PYTHON
 Volume Five Volume Five
 Parts 27-31Parts 27-31

Full Circle

Full Circle Magazine is neither affiliated, with nor endorsed by, Canonical Ltd.

Full Circle Magazine Specials

full circle magazine

The articles contained in this magazine are released under the Creative Commons Attribution-Share Alike 3.0
Unported license. This means you can adapt, copy, distribute and transmit the articles but only under the following conditions:

You must attribute the work to the original author in some way (at least a name, email or URL) and to this magazine by name ('full circle magazine') and
the URL www.fullcirclemagazine.org (but not attribute the article(s) in any way that suggests that they endorse you or your use of the work). If you alter,
transform, or build upon this work, you must distribute the resulting work under the same, similar or a compatible license.
Full Circle Magazine is entirely independent of Canonical, the sponsor of Ubuntu projects and the views and opinions in the magazine should in
no way be assumed to have Canonical endorsement.

Please note: this Special
Edition is provided with
absolutely no warranty
whatsoever; neither the
contributors nor Full Circle
Magazine accept any
responsibility or liability for
loss or damage resulting from
readers choosing to apply this
content to theirs or others
computers and equipment.

About Full Circle

Full Circle is a free,
independent, magazine
dedicated to the Ubuntu
family of Linux operating
systems. Each month, it
contains helpful how-to
articles and reader-
submitted stories.

Full Circle also features a
companion podcast, the Full
Circle Podcast which covers
the magazine, along with
other news of interest.

Welcome to another 'single-topic special'
In response to reader requests, we are assembling the
content of some of our serialised articles into dedicated
editions.

For now, this is a straight reprint of the series
'Programming in Python', Parts 27-31 from issues #53
through #59; and yes, peerless Python professor Gregg
Walters took some time off during this run!

Please bear in mind the original publication date; current
versions of hardware and software may differ from those
illustrated, so check your hardware and software versions
before attempting to emulate the tutorials in these special
editions. You may have later versions of software installed
or available in your distributions' repositories.

Enjoy!

Find Us

Website:
http://www.fullcirclemagazine.org/

Forums:
http://ubuntuforums.org/
forumdisplay.php?f=270

IRC: #fullcirclemagazine on
chat.freenode.net

Editorial Team

Editor: Ronnie Tucker
(aka: RonnieTucker)
ronnie@fullcirclemagazine.org

Webmaster: Rob Kerfia
(aka: admin / linuxgeekery-
admin@fullcirclemagazine.org

Editing & Proofreading
Mike Kennedy, Lucas Westermann,
Gord Campbell, Robert Orsino,
Josh Hertel, Bert Jerred

Our thanks go to Canonical and the
many translation teams around the
world.

http://www.fullcirclemagazine.org/
http://ubuntuforums.org/forumdisplay.php?f=270
http://ubuntuforums.org/forumdisplay.php?f=270
mailto:ronnie@fullcirclemagazine.org
mailto:admin@fullcirclemagazine.org

full circle magazine #53 7 contents ^

HHOOWW--TTOO
Written by Greg Walters PPrrooggrraamm IInn PPyytthhoonn -- PPaarrtt 2277

If you've ever waited in line to
buy a movie ticket, you've
been in a queue. If you've ever
had to wait in traffic at rush

hour, you've been in a queue. If
you've ever waited in a
government office with one of
those little tickets that says you’re
number 98, and the sign says "Now
serving number 42," you've been in
a queue.

In the world of computers,
queues are common. As a user,
most times, you don't have to
think about them. They are
invisible to the user. But if you
ever have to deal with realtime
events, you will eventually have to
deal with them. It's just data of
one type or another, waiting in line
for its turn to be processed. Once
it's in the queue, it's there until it
gets accessed, and then it's gone.
You can't get the value of the next
data item unless you pull it out of
the queue. You can't, for example,
get the value of the 15th item in
the queue. You have to access the
other 14 items first. Once it's
accessed, it's out of the queue. It's
gone, and unless you save it to a

long-term variable, there's no way
to get the data back.

There are multiple types of
queues. The most common ones
are FIFO (First In, First Out), LIFO
(Last In, First Out), Priority, and
Ring. We'll talk about ring queues
another time.

FIFO queues are what we see in
everyday life. All of the examples I
listed above are FIFO queues. The
first person in the line gets
handled first, moves on, then
everyone moves up one spot in the
line. In a FIFO buffer, there is
(within reason) no limit to the
number of items it can hold. They
just stack up in order. As an item is
handled, it is pulled out (or
dequeued) of the queue, and
everything moves closer to the
front of the queue by one position.

LIFO Queues are less common
in life, but there are still real-world
examples. The one that comes to
mind most quickly is a stack of
dishes in your kitchen cabinet.
When the dishes are washed and
dryed, they get stacked in the

cabinet. The last one in on the
stack is the first one that comes
out to be used. All the rest have to
wait, maybe for days, to be used.
It's a good thing that the movie
ticket queue is FIFO, isn't it? Like
the FIFO queue, within reason,
there is no limit to the size of a
LIFO queue. The first item in the
queue has to wait as newer items
are pulled out of the buffer (plates
pulled off the stack) until it's the
only one left.

Priority queues are a bit harder
for many people to imagine right
off the bat. Think of a company
that has one printer. Everyone
uses that one printer. The print
jobs are handled by department
priority. Payroll has a higher
priority (and thankfully so) than
say, you, a programmer. You have a
higher priority (and thankfully so)
than the receptionist. So in short,
the data that has a higher priority
gets handled, and gets out of the
queue, before data that has a
lower priority.

FIFO

FIFO queues are easy to
visualize in terms of data. A python
list is an easy mental
representation. Consider this list...

[1,2,3,4,5,6,7,8,9,10]

There are 10 items in the list.
As a list, you access them by index.
However, in a queue, you can't
access the items by index. You
have to deal with the next one in
the line and the list isn't static. It's
VERY dynamic. As we request the
next item in the queue, it gets
removed. So using the example
above, you request one item from
the queue. It returns the first item
(1) and the queue then looks like
this.

[2,3,4,5,6,7,8,9,10]

“ There are multiple
types of queues.
The most common
ones are FIFO (First
In, First Out), LIFO
(Last In, First Out),
Priority, and Ring.

full circle magazine #53 8 contents ^

HOWTO - PROGRAM IN PYTHON - PART 27

Request two more and you get
2, then 3, returned, and then the
queue looks like this.

[4,5,6,7,8,9,10]

I'm sure you get the idea.
Python provides a simple library,
surprisingly enough, called Queue,
that works well for small-to-
medium sized queues, up to about
500 items. Above is a simple
example to show it.

In this example, we initialize
the queue (fifo = Queue.Queue())
then put the numbers 0 through 4
into our queue (fifo.put(i)). We
then use the internal method
.get() to pull items off the queue
until the queue is empty, .empty().
What is returned is 0,1,2,3,4. You
can also set the maximum number
of items that the queue can handle
by initializing it with the size of the
queue like this.

fifo = Queue.Queue(300)

Once the maximum number of
items have been loaded, the
Queue blocks any additional
entries going into the queue. This
has a side effect of making the
program look like it's "locked" up,
though. The easiest way to get
around this is to use the
Queue.full() check (above right).

In this case, the queue is set for
a maximum of 12 items. As we put
items into the queue, we start with
'0' and get up to '11'. When we hit
number 12, though, the buffer is
already full. Since we check to see
if the buffer is full before we try to
put the item in, the last item is
simply discarded.

There are other options, but
they can cause other side-effects,
and we will address this in a future
article. So, for the majority of the
time, the bottom line is either use

a queue with no limit or make sure
you have more space in your
queue than you will need.

LIFO

The Queue library also supports
LIFO queues. We'll use the above
list as a visual example. Setting up
our queue, it looks like this:

[1,2,3,4,5,6,7,8,9,10]

Pulling three items from the
queue, it then looks like this:

[1,2,3,4,5,6,7]

Remember that in a LIFO
queue, items are removed in a
LAST-in FIRST-out order. Here's the
simple example modified for a
LIFO queue:

When we run it, we get
"4,3,2,1,0".

As with the FIFO queue, you
have the ability to set the size of

the queue, and you can use the
.full() check.

PRIORITY

While it's not often used, a
Priority queue can sometimes be
helpful. It's pretty much the same
as the other queue structures, but
we need to pass a tuple that holds
both the priority and the data.
Here's an example using the
Queue library:

import Queue
fifo = Queue.Queue()
for i in range(5):
 fifo.put(i)

while not fifo.empty():
 print fifo.get()

import Queue

fifo = Queue.Queue(12)
for i in range(13):
 if not fifo.full():
 fifo.put(i)

while not fifo.empty():
 print fifo.get()

import Queue
lifo = Queue.LifoQueue()
for i in range(5):
 lifo.put(i)

while not lifo.empty():
 print lifo.get()

pq = Queue.PriorityQueue()
pq.put((3,'Medium 1'))
pq.put((4,'Medium 2'))
pq.put((10,'Low'))
pq.put((1,'high'))

while not pq.empty():
 nex = pq.get()
 print nex
 print nex[1]

(1, 'high')
high
(3, 'Medium')
Medium
(4, 'Medium')
Medium
(10, 'Low')
Low

full circle magazine #53 9 contents ^

First, we initialize the queue.
Then we put four items into the
queue. Notice we use the format
(priority, data) to put our data. The
library sorts our data in a
ascending order based on the
priority value. When we pull the
data, it comes back as a tuple, just
like we put it in. You can address
by index the data. What we get
back is...

In our first two examples, we
simply printed the data that comes
out of our queue. That's fine for
these examples, but in real-world
programming, you probably need
to do something with that
information as soon as it comes
out of the queue, otherwise it's
lost. When we use the 'print
fifo.get', we send the data to the
terminal and then it's destroyed.
Just something to keep in mind.

Now let's use some of what
we've already learned about
tkinter to create a queue demo
program. This demo will have two
frames. The first will contain (to
the user) three buttons. One for a
FIFO queue, one for a LIFO queue,
and one for a PRIORITY queue. The
second frame will contain an entry
widget, two buttons, one for

adding to the queue, and one for
pulling from the queue, and three
labels, one showing when the
queue is empty, one showing when
the queue is full, and one to
display what has been pulled from
the queue. We'll also be writing
some code to automatically center
the window within the screen.
Above left is the beginning of the
code.

Here we have our imports and
the beginning of our class. As
before, we create the __init__
routine with the DefineVars,
BuildWidgets, and PlaceWidgets
routines. We also have a routine
called ShowStatus (above right)
which will... well, show the status
of our queue.

We now create our DefineVars
routine. We have four StringVar()
objects, an empty variable called

HOWTO - PROGRAM IN PYTHON - PART 27

import sys
from Tkinter import *
import ttk
import tkMessageBox
import Queue

class QueueTest:
 def __init__(self,master = None):
 self.DefineVars()
 f = self.BuildWidgets(master)
 self.PlaceWidgets(f)
 self.ShowStatus()

 def DefineVars(self):
 self.QueueType = ''
 self.FullStatus = StringVar()
 self.EmptyStatus = StringVar()
 self.Item = StringVar()
 self.Output = StringVar()
 # Define the queues
 self.fifo = Queue.Queue(10)
 self.lifo = Queue.LifoQueue(10)
 self.pq = Queue.PriorityQueue(10)
 self.obj = self.fifo

 def BuildWidgets(self,master):
 # Define our widgets
 frame = Frame(master)
 self.f1 = Frame(frame,
 relief = SUNKEN,
 borderwidth=2,
 width = 300,
 padx = 3,
 pady = 3
)
 self.btnFifo = Button(self.f1,
 text = "FIFO"
)
 self.btnFifo.bind('<ButtonRelease-1>',
 lambda e: self.btnMain(1)
)
 self.btnLifo = Button(self.f1,
 text = "LIFO"
)
 self.btnLifo.bind('<ButtonRelease-1>',
 lambda e: self.btnMain(2)
)
 self.btnPriority = Button(self.f1,
 text = "PRIORITY"
)
 self.btnPriority.bind('<ButtonRelease-1>',
 lambda e: self.btnMain(3)
)

full circle magazine #53 10 contents ^

QueueType, and three queue
objects - one for each of the types
of queues that we are going to
play with. We have set the
maximum size of the queues at 10
for the purposes of the demo. We
also have created an object called
obj, and assigned it to the FIFO
queue. When we select a queue
type from the buttons, we will set
this object to the queue that we
want. This way, the queue is
maintained when we switch to
another queue type (code is on
previous page, bottom right).

Here we start the widget
definitions. We create our first
frame, the three buttons, and their
bindings. Notice we are using the
same routine to handle the
binding callback. Each button
sends a value to the callback
routine to denote which button
was clicked. We could just as easily
have created a dedicated routine
for each button. However, since all
three buttons are dealing with a
common task, I thought it would
be good to work them as a group
(code shown right).

Next (below right), we set up
the second frame, the entry
widget, and the two buttons. The

only thing here that is out of the
ordinary is the binding for the
entry widget. Here we bind the
self.AddToQueue routine to the
<Return> key. This way, the user
doesn't have to use the mouse to
add the data. They can just enter
the data into the entry widget, and
press <Return> if they want to.

Here (next page, bottom) is the
last three widget definitions. All
three are labels. We set the
textvariable attribute to the
variables we defined earlier. If you
remember, when that variable
changes, so does the text in the
label. We also do something a bit
different on the lblData label. We
will use a different font to make it
stand out when we display the
data pulled from the queue.
Remember that we have to return
the frame object so it can be used
in the PlaceWidget routine.

This (next page, middle) is the
beginning of the PlaceWidgets
routine. Notice here that we put
five empty labels at the very top of
the root window. I'm doing this to
set spacing. This is an easy way to
“cheat” and make your window
placement much easier. We then
set the first frame, then another

HOWTO - PROGRAM IN PYTHON - PART 27

 self.f2 = Frame(frame,
 relief = SUNKEN,
 borderwidth=2,
 width = 300,
 padx = 3,
 pady = 3
)
 self.txtAdd = Entry(self.f2,
 width=5,
 textvar=self.Item
)
 self.txtAdd.bind('<Return>',self.AddToQueue)
 self.btnAdd = Button(self.f2,
 text='Add to Queue',
 padx = 3,
 pady = 3
)
 self.btnAdd.bind('<ButtonRelease-1>',self.AddToQueue)
 self.btnGet = Button(self.f2,
 text='Get Next Item',
 padx = 3,
 pady = 3
)
 self.btnGet.bind('<ButtonRelease-1>',self.GetFromQueue)

 self.lblEmpty = Label(self.f2,
 textvariable=self.EmptyStatus,
 relief=FLAT
)
 self.lblFull = Label(self.f2,
 textvariable=self.FullStatus,
 relief=FLAT
)
 self.lblData = Label(self.f2,
 textvariable=self.Output,
 relief = FLAT,
 font=("Helvetica", 16),
 padx = 5
)

 return frame

full circle magazine #53 11 contents ^

HOWTO - PROGRAM IN PYTHON - PART 27
“cheater” label, then the three
buttons.

Here we place the second
frame, another “cheater” label,
and the rest of our widgets.

def Quit(self):
 sys.exit()

Next we have our “standard”

quit routine which simply calls
sys.exit() (above right).

Now our main button callback
routine, btnMain. Remember we
are sending in (through the p1
parameter) which button was
clicked. We use the
self.QueueType variable as a
reference to which queue type we
are dealing with, then we assign
self.obj to the proper queue, and

finally change the title of our root
window to display the queue type
we are using. After that, we print
the queue type to the terminal
window (you don't really have to
do that), and call the ShowStatus
routine. Next (following page, top
right) we'll make the ShowStatus
routine.

As you can see, it's pretty
simple. We set the label variables
to their proper state so they

 def PlaceWidgets(self, master):
 frame = master
 # Place the widgets
 frame.grid(column = 0, row = 0)
 l = Label(frame,text='',relief=FLAT,width = 15, anchor = 'e').grid(column = 0, row = 0)
 l = Label(frame,text='',relief=FLAT,width = 15, anchor = 'e').grid(column = 1, row = 0)
 l = Label(frame,text='',relief=FLAT,width = 15, anchor = 'e').grid(column = 2, row = 0)
 l = Label(frame,text='',relief=FLAT,width = 15, anchor = 'e').grid(column = 3, row = 0)
 l = Label(frame,text='',relief=FLAT,width = 15, anchor = 'e').grid(column = 4, row = 0)

 self.f1.grid(column = 0,row = 1,sticky='nsew',columnspan=5,padx = 5,pady = 5)
 l = Label(self.f1,text='',width = 25,anchor = 'e').grid(column = 0, row = 0)
 self.btnFifo.grid(column = 1,row = 0,padx = 4)
 self.btnLifo.grid(column = 2,row = 0,padx = 4)
 self.btnPriority.grid(column = 3, row = 0, padx = 4)

 self.f2.grid(column = 0,row = 2,sticky='nsew',columnspan=5,padx = 5, pady = 5)
 l = Label(self.f2,text='',width = 15,anchor = 'e').grid(column = 0, row = 0)
 self.txtAdd.grid(column=1,row=0)
 self.btnAdd.grid(column=2,row=0)
 self.btnGet.grid(column=3,row=0)
 self.lblEmpty.grid(column=2,row=1)
 self.lblFull.grid(column=3,row = 1)
 self.lblData.grid(column = 4,row = 0)

 def btnMain(self,p1):
 if p1 == 1:
 self.QueueType = 'FIFO'
 self.obj = self.fifo
 root.title('Queue Tests - FIFO')
 elif p1 == 2:
 self.QueueType = 'LIFO'
 self.obj = self.lifo
 root.title('Queue Tests - LIFO')
 elif p1 == 3:
 self.QueueType = 'PRIORITY'
 self.obj = self.pq
 root.title('Queue Tests - Priority')

 print self.QueueType
 self.ShowStatus()

full circle magazine #53 12 contents ^

HOWTO - PROGRAM IN PYTHON - PART 27
display if the queue we
are using is either full,
empty, or somewhere in
between.

The AddToQueue
routine (next page,
bottom right) is also fairly
straight-forward. We get
the data from the entry
box using the .get()
function. We then check
to see if the current
queue type is a priority queue. If
so, we need to make sure it's in the
correct format. We do that by
checking for the presence of a
comma. If it isn't, we complain to
the user via an error message box.
If everything seems correct, we
then check to see if the queue that
we are currently using is full.
Remember, if the queue is full, the
put routine is blocked and the
program will hang. If everything is
fine, we add the item to the queue
and update the status.

The GetFromQueue routine
(middle right) is even easier. We
check to see if the queue is empty
so as not to run into a blocking
issue, and, if not, we pull the data
from the queue, show the data,
and update the status.

We are getting to the end of
our application. Here is the center
window routine (above left). We
first get the screen width and
screen height of the screen we are
on. We then get the width and
height of the root window by using
the winfo_reqwidth() and
winfo_reqheight() routines built
into tkinter. These routines, when
called at the right
time, will return the
width and height of
the root window
based on the
widget placement.
If you call it too
early, you'll get
data, but it won't be
what you really
need. We then
subtract the
required window

 def ShowStatus(self):
 # Check for Empty
 if self.obj.empty() == True:
 self.EmptyStatus.set('Empty')
 else:
 self.EmptyStatus.set('')
 # Check for Full
 if self.obj.full() == True:
 self.FullStatus.set('FULL')
 else:
 self.FullStatus.set('')

 def AddToQueue(self,p1):
 temp = self.Item.get()
 if self.QueueType == 'PRIORITY':
 commapos = temp.find(',')
 if commapos == -1:
 print "ERROR"
 tkMessageBox.showerror('Queue Demo',
 'Priority entry must be in format\r(priority,data)')
 else:
 self.obj.put(self.Item.get())
 elif not self.obj.full():
 self.obj.put(self.Item.get())
 self.Item.set('')
 self.ShowStatus()

 def GetFromQueue(self,p1):
 self.Output.set('')
 if not self.obj.empty():
 temp = self.obj.get()
 self.Output.set("Pulled

{0}".format(temp))
 self.ShowStatus()

if __name__ == '__main__':
 def Center(window):
 # Get the width and height of the screen
 sw = window.winfo_screenwidth()
 sh = window.winfo_screenheight()
 # Get the width and height of the window
 rw = window.winfo_reqwidth()
 rh = window.winfo_reqheight()
 xc = (sw-rw)/2
 yc = (sh-rh)/2
 window.geometry("%dx%d+%d+%d"%(rw,rh,xc,yc))
 window.deiconify()

full circle magazine #53 13 contents ^

Greg Walters is owner of RainyDay
Solutions, LLC, a consulting company
in Colorado and has been
programming since 1972. He enjoys
cooking, hiking, music, and spending
time with his family. His website is
www.thedesignatedgeek.com.

HOWTO - PROGRAM IN PYTHON - PART 27
width from the screen
width, and divide it by
two, and do the same
thing for the height
information. We then use
that information to set the
geometry call. In MOST instances,
this works wonderfully. However,
there might be times that you
need to set the required width and
height by hand.

Finally, we instantiate the root
window, set the base title,
instantiate the QueueTest class.
We then call root.after, which
waits x number of milliseconds (in
this case 3) after the root window
is instantiated, and then calls the
Center routine. This way, the root
window has been completely set
up and is ready to go, so we can
get the root window width and
height. You might have to tweak
the delay time a bit. Some
machines are much faster than
others. 3 works fine on my
machine, your mileage may vary.
Last but not least, we call the root
window mainloop to get the
application to run.

As you play with the queues,
notice that if you put some data in
one queue (let's say the FIFO
queue) then switch to another

queue (let's say the LIFO queue),
the data that was put into the FIFO
queue is still there and waiting for
you. You can completely or
partially fill all three queues, then
start playing with them.

Well, that's it for this time.
Have fun with your queues. The
QueueTest code can be found at
http://pastebin.com/5BBUiDce.

 root = Tk()
 root.title('Queue Tests - FIFO')
 demo = QueueTest(root)
 root.after(3,Center,root)
 root.mainloop() Z e r o D o w n t i m e

Below Zero is a Co-located Server Hosting specialist in the UK.

Uniquely we only provide rack space
and bandwidth. This makes our service
more reliable, more flexible, more
focused and more competitively
priced. We concentrate solely on the
hosting of Co-located Servers and their
associated systems, within Scotland's
Data Centres.

At the heart of our networking
infrastructure is state-of-the-art BGP4
routing that offers optimal data
delivery and automatic multihomed
failover between our outstanding
providers. Customers may rest assured
that we only use the highest quality of
bandwidth; our policy is to pay more for the best of breed providers
and because we buy in bulk this doesn't impact our extremely
competitive pricing.

At Below Zero we help you to achieve Zero Downtime.

w w w. ze ro d ow n t i m e .co. u k

full circle magazine #54 7 �������� �

HHOOWW--TTOO
Written by Greg Walters PPrrooggrraamm IInn PPyytthhoonn -- PPaarrtt 2288

Weare going to
explore even more
widgets provided by
tkinter. This time we

will look at menus, combo boxes,
spin boxes, separator bar, progress
bars and notebooks. Let's talk
about them one at a time.

You've seen menus in almost
every application that you have
ever used. Tkinter makes it VERY
easy for us to make menus. Combo
Boxes are similar to the list box
that we explored in the last widget
demo article, except the list “pops
down” instead of being visible at all
times. Spin box controls are great
for giving a fixed range of values
that can “scroll” up or down. For
example, if we want the user to be
able to choose from integers
between 1 and 100, we can easily
use a spin box. Progress bars are a
wonderful way to show that your
application hasn't locked up when
something takes a lot of time, like
reading records from a database. It
can show the percentage of
completion of a task. There are two
types of progress bars,
Determinate and Indeterminate.

You use a determinate progress bar
when you know just how many
items you are dealing with. If you
don't know the number of items or
the percentage of how done your
task is at any point, you would use
the Indeterminate version. We will
work with both. Finally a notebook
widget (or tabbed widget) is used
many times for things like
configuration screens. You can
logically group a series of widgets
on each tab.

So, let's get started. As usual,
we will create a base application
and build on to it with each extra
widget we add. Shown right is the
first part of our application. You've
seen most of this before.

Save all of this as
widgetdemo2a.py. Remember we
will use this as the base to build the
full demo. Now we will start the
process of creating the menu. Here
are the steps we need to do. First,
we define a variable to hold the
menu instance. Like most any
widget we use, the format is...

OurVariable = Widget(parent,
options).

import sys
from Tkinter import *
import ttk
Shows how to create a menu
class WidgetDemo2:

def __init__(self,master = None):
self.DefineVars()
f = self.BuildWidgets(master)
self.PlaceWidgets(f)

def DefineVars(self):
pass

And here is the bottom of our program. Again, you have seen this
before. Nothing new here.

if __name__ == '__main__':
def Center(window):

Get the width and height of the screen
sw = window.winfo_screenwidth()
sh = window.winfo_screenheight()
Get the width and height of the window
rw = window.winfo_reqwidth()
rh = window.winfo_reqheight()
xc = (sw­rw)/2
yc = (sh­rh)/2
print "{0}x{1}".format(rw,rh)
window.geometry("%dx%d+%d+%d"%(rw,rh,xc,yc))
window.deiconify()

root = Tk()
root.title('More Widgets Demo')
demo = WidgetDemo2(root)
root.after(13,Center,root)
root.mainloop()

full circle magazine #54 8 �������� �

HOWTO - PROGRAM IN PYTHON - PART 28
In this case, we are using the

Menu widget and we will assign it
to master as the parent. We do this
under the BuildWidgets routine.
Next we create another menu item,
this time calling it filemenu. We
add commands and separators as
needed. Finally we add it to the
menu bar and do it all over again
until we are done. In our example,
we'll have the menubar, a File
pulldown, an Edit pulldown and a
Help pulldown (top right). Let's get
started.

Next (middle right) we
concentrate on the File Menu.
There will be five elements. New,
Open, Save, a separator and Exit.
We'll use the .add_command
method to add the command. All
we really need to do is call the
method with the text (label =) and
then provide a callback function to
handle when the user clicks the
item. Finally we use the
menubar.add_cascade function to
attach the menu to the bar.

Notice that the Exit command
uses “root.quit” to end the
program. No call back needed for
that. Next we'll do the same thing
for the Edit and Help menus.

Notice the part in each of the

menu group definitions that says
“tearoff=0”. If you were to change
the “=0” to “=1”, the menu would
start with what looks like a dashed
line and if you drag it, it “tears off”
and creates its own window. While
this might be helpful sometime in
the future, we don't want that
here.

Last but not least, we
need to place the menu.
We don't do a normal
placement with the .grid()
function. We simply add it
by using the parent.config
function (bottom right).

All of this has gone in
the BuildWidgets routine.
Now (next page, top
right) we need to add a
generic frame and set the
return statement before
we move on to the
PlaceWidgets routine.

Finally (next page,
bottom right) we need to create all
the callbacks we defined earlier.
For the demo, all we'll do is print
something in the terminal used to
launch the program.

That's it. Save and run the

def BuildWidgets(self,master):
frame = Frame(master)
#==============================
MENU STUFF
#==============================
Create the menu bar
self.menubar = Menu(master)

Create the File Pull Down, and add it to the menu bar
filemenu = Menu(self.menubar, tearoff = 0)
filemenu.add_command(label = "New", command = self.FileNew)
filemenu.add_command(label = "Open", command = self.FileOpen)
filemenu.add_command(label = "Save", command = self.FileSave)
filemenu.add_separator()
filemenu.add_command(label = "Exit", command = root.quit)
self.menubar.add_cascade(label = "File", menu = filemenu)

Create the Edit Pull Down
editmenu = Menu(self.menubar, tearoff = 0)
editmenu.add_command(label = "Cut", command = self.EditCut)
editmenu.add_command(label = "Copy", command = self.EditCopy)
editmenu.add_command(label = "Paste", command = self.EditPaste)
self.menubar.add_cascade(label = "Edit", menu = editmenu)
Create the Help Pull Down
helpmenu = Menu(self.menubar, tearoff=0)
helpmenu.add_command(label = "About", command = self.HelpAbout)
self.menubar.add_cascade(label = "Help", menu = helpmenu)

Now, display the menu
master.config(menu = self.menubar)
#==
End of Menu Stuff
#==

full circle magazine #54 9 �������� �

program. Click on each of the menu
options (saving File|Exit for last).

Now (below) we'll deal with the
combo box. Save your file as
widgetdemo2b.py and we'll get
started. The imports, class
definition and the def __init__
routines are all the same, as is the
bottom part of the program. We'll
add two lines to the DefineVars
routine. Either comment out the
“pass” statement or erase it and
put in the following code. (I
included the definition line just for
clarity.)

First we define a label, which
we've done before. Next we define
the combo box. We use
“ttk.Combobox”, define the parent
and set the height to 19, the width
to 20 and the textvariable to
“self.cmbo1Val”. Remember that
we set textvariables in the last
widget demo, but just in case you
forgot...this is changed anytime the
value in the combo box is changed.
We defined it in DefineVars as a
StringVar object. Next we load the
values that we want the user to
choose from, again we defined that
in DefineVars. Finally we bind the
virtual event

HOWTO - PROGRAM IN PYTHON - PART 28

self.f1 = Frame(frame,
relief = SUNKEN,
borderwidth = 2,
width = 500,
height = 100
)

return frame

Next we (as we have done multiple times) deal with placing our
other widgets.

def PlaceWidgets(self,master):
frame = master
frame.grid(column = 0, row = 0)

self.f1.grid(column = 0,
row = 0,
sticky = 'nsew'
)

def FileNew(self):
print "Menu ­ File New"

def FileOpen(self):
print "Menu ­ File Open"

def FileSave(self):
print "Menu ­ File Save"

def EditCut(self):
print "Menu ­ Edit Cut"

def EditCopy(self):
print "Menu ­ Edit Copy"

def EditPaste(self):
print "Menu ­ Edit Paste"

def HelpAbout(self):
print "Menu ­ Help About"

def DefineVars(self):
self.cmbo1Val = StringVar()
self.c1Vals = ['None','Option 1','Option 2','Option 3']

After our the self.f1 definition in BuildWidgets and before the “return frame” line insert the
following code.

Combo Box
self.lblcb = Label(self.f1, text = "Combo Box: ")
self.cmbo1 = ttk.Combobox(self.f1,

height = "19",
width = 20,
textvariable = self.cmbo1Val

)
self.cmbo1['values'] = self.c1Vals
Bind the virtual event to the callback
self.cmbo1.bind("<<ComboboxSelected>>",self.cmbotest)

full circle magazine #54 10 �������� �

<<ComboboxSelected>> to the
cmbotest routine that we will flesh
out in a minute.

Next let's place the combo box
and the label into our form (top
right).

Save everything and test it out.

Now save as widgetdemo2c.py
and we'll start with the separator
bar. This is SO super easy. While the
updated tkinter provides a
separator bar widget, I've never
been able to get it to work. Here's
an easy work around. We use a
frame with a height of 2. The only
changes to our program will be the
definition of the frame in
BuildWidgets after the combo box
bind statement and placing the
frame in the Place Widgets routine.
So, in BuildWidgets put in the
following lines (shown middle
right)...

Once again, you've seen all this
before. Save and test it. You'll
probably have to expand the
topmost window to see the
separator, but it will become much
more evident in the next demo.
Save as widgetdemo2d.py and we'll
add the spin control.

Under DefineVars, add the
following line...

self.spinval = StringVar()

By now, you know that this is so
we can get the value at any time
we want. Next, we'll add some
code to the BuildWidgets
routine...just before the “return
frame” line (bottom right).

Here we define a label and the
spin control. The spin control
definition is as follows:

ourwidget =
Spinbox(parent,low value,
high value, width,
textvariable, wrap)

The low value must be called as
“from_” since the word “from” is a
keyword and using that would
simply confuse everyting. The
values “from_” and “to” must be
defined as float values. In this case
we want it to have a low value of 1
and a high value of 10. Finally the
wrap option says that if the value is
(in our case) 10 and the user clicks
on the up arrow, we want it to wrap
around to the low value and keep
going. The same works for the low
value. If the user clicks the down

HOWTO - PROGRAM IN PYTHON - PART 28

self.lblcb.grid(column = 0,row = 2)
self.cmbo1.grid(column = 1,

row = 2,
columnspan = 4,
pady = 2
)

And finally we put in the callback which simply prints what the user
selected into the terminal window.

def cmbotest(self,p1):
print self.cmbo1Val.get()

self.fsep = Frame(self.f1,
width = 140,
height = 2,
relief = RIDGE,
borderwidth = 2
)

And in PlaceWidgets put in this …

self.fsep.grid(column = 0,
row = 3,
columnspan = 8,
sticky = 'we',
padx = 3,
pady = 3
)

self.lblsc = Label(self.f1, text = "Spin Control:")
self.spin1 = Spinbox(self.f1,

from_ = 1.0,
to = 10.0,
width = 3,
textvariable = self.spinval,
wrap=True
)

full circle magazine #54 11 �������� �

HOWTO - PROGRAM IN PYTHON - PART 28
arrow of the control and the value
is 1, it wraps to 10 and keeps going.
If you set “wrap=False”, the control
simply stops at whichever direction
the user is going.

Now we'll place the widgets in
PlaceWidgets (below).

Again, that's it. Save and play.
You'll really notice the separator
now.

Save as widgetdemo2e.py and
we'll do the progress bars.

Again, we need to define some
variables, so in the DefineVars
routine add the following code...

self.spinval2 = StringVar()
self.btnStatus = False
self.pbar2val = StringVar()

It should be pretty obvious what
the two StringVar variables are.
We'll discuss the “self.btnStatus” in
a moment. For now, let's go and
define the widgets for this portion
in BuildWidgets (right).

Again this goes before the
“return frame” line. What we are
doing is setting up a frame for us
to put the widgets into. Then we
set up two labels as guides. Next
we define the first progress bar.
Here the only things that might be
strange are length, mode and
maximum. Length is the size in
pixels of our bar. Maximum is the
highest value that will be seen. In
this case it's 100 since we are
looking at percentage. Mode in this
case is 'indeterminate'. Remember,
we use this mode when we don't
know how far we've gotten in a
task so we just want to let the user
know that something is happening.

Next we add a button (you've
done this before), another label
another progress bar and another
spin control. The mode for the
second progress bar is
“determinate”. We will use the spin
control to set the “percentage” of
completion. Next add the following
lines (next page, top left) into the
PlaceWidgets routine.

self.lblsc.grid(column = 0, row = 4)
self.spin1.grid(column = 1,

row = 4,
pady = 2
)

#=======================================
Progress Bar Stuff
#=======================================
self.frmPBar = Frame(self.f1,

relief = SUNKEN,
borderwidth = 2
)

self.lbl0 = Label(self.frmPBar,
text = "Progress Bars"
)

self.lbl1 = Label(self.frmPBar,
text = "Indeterminate",
anchor = 'e'
)

self.pbar = ttk.Progressbar(self.frmPBar,
orient = HORIZONTAL,
length = 100,
mode = 'indeterminate',
maximum = 100
)

self.btnptest = Button(self.frmPBar,
text = "Start",
command = self.TestPBar
)

self.lbl2 = Label(self.frmPBar,
text = "Determinate"
)

self.pbar2 = ttk.Progressbar(self.frmPBar,
orient = HORIZONTAL,
length = 100,
mode = 'determinate',
variable = self.pbar2val
)

self.spin2 = Spinbox(self.frmPBar,
from_ = 1.0,
to = 100.0,
textvariable = self.spinval2,
wrap = True,
width = 5,
command = self.Spin2Do
)

full circle magazine #54 12 �������� �

HOWTO - PROGRAM IN PYTHON - PART 28
Lastly, we add two routines to

control our progress bars (botom
right).

The TestPBar routine controls
the indeterminate progress bar.
Basically, we are starting and
stopping an internal timer that is
built into the progress bar. The line
“self.pbar.start(10)” sets the timer
to 10 milliseconds. This makes the
bar move fairly quickly. Feel free to
play with this value up and down
on your own. The Spin2Do routine
simply sets the progress bar to

whatever value the spin control
has. We print it as well to the
terminal.

That's all the changes for this.
Save and play.

Now save as widgetdemo2f.py
and we'll deal with the tabbed
notebook widgets. In BuildWidgets
put the following code (below)
before the “return frame” line...

Let's look at what we did. First,
we define a frame for our

Progress Bar
self.frmPBar.grid(column = 0,

row = 5,
columnspan = 8,
sticky = 'nsew',
padx = 3,
pady = 3
)

self.lbl0.grid(column = 0, row = 0)
self.lbl1.grid(column = 0,

row = 1,
pady = 3
)

self.pbar.grid(column = 1, row = 1)
self.btnptest.grid(column = 3, row = 1)
self.lbl2.grid(column = 0,

row = 2,
pady = 3
)

self.pbar2.grid(column = 1, row = 2)
self.spin2.grid(column = 3, row = 2)

def TestPBar(self):
if self.btnStatus == False:

self.btnptest.config(text="Stop")
self.btnStatus = True
self.pbar.start(10)

else:
self.btnptest.config(text="Start")
self.btnStatus = False
self.pbar.stop()

def Spin2Do(self):
v = self.spinval2.get()
print v
self.pbar2val.set(v)

#=======================================
NOTEBOOK
#=======================================
self.nframe = Frame(self.f1,

relief = SUNKEN,
borderwidth = 2,
width = 500,
height = 300
)

self.notebook = ttk.Notebook(self.nframe,
width = 490,
height = 290
)

self.p1 = Frame(self.notebook)
self.p2 = Frame(self.notebook)
self.notebook.add(self.p1,text = 'Page One')
self.notebook.add(self.p2,text = 'Page Two')
self.lsp1 = Label(self.p1,

text = "This is a label on
page number 1",

padx = 3,
pady = 3
)

full circle magazine #54 13 �������� �

HOWTO - PROGRAM IN PYTHON - PART 28
notebook widget. Now we define
the widget. All the options are
ones we've seen before. Next we
define two frames named self.p1
and self.p2. These act as our pages.
The next two lines
(self.notebook.add) attach the
frames to the notebook widget and
they get a tab attached to them.
We also set the text for the tabs.
Finally, we put a label on page
number one. We'll put one on page
number two when we place the
controls just for fun.

In the PlaceWidgets routine put
the following code (below).

The only thing that might
possibly be strange is the label on
page two. We combine the
definition and placement in the
grid with the same command. We
did that when we did our first
widget demo app.

That's it. Save and play.

As always the full code for the
full application is up on pastebin at
http://pastebin.com/qSPkSNU1.

Enjoy. Next time we'll deal with
some more database stuff.

self.nframe.grid(column = 0,
row = 6,
columnspan = 8,
rowspan = 7,
sticky = 'nsew'
)

self.notebook.grid(column = 0,
row = 0,
columnspan = 11,
sticky = 'nsew'
)

self.lsp1.grid(column = 0,row = 0)
self.lsp2 = Label(self.p2,

text = 'This is a label on PAGE 2',
padx = 3,
pady = 3
).grid(

column = 0,
row = 1
)

Z e r o D ow n t i m e

Below Zero is a Co-located Server Hosting specialist in the UK.

Uniquely we only provide rack space
and bandwidth. This makes our service
more reliable, more flexible, more
focused and more competitively priced.
We concentrate solely on the hosting of
Co-located Servers and their associated
systems, within Scotland's Data
Centres.

At the heart of our networking
infrastructure is state-of-the-art BGP4
routing that offers optimal data
delivery and automatic multihomed
failover between our outstanding
providers. Customers may rest assured
that we only use the highest quality of
bandwidth; our policy is to pay more for the best of breed providers
and because we buy in bulk this doesn't impact our extremely
competitive pricing.

At Below Zero we help you to achieve Zero Downtime.

www.zerodowntime.co.uk

full circle magazine #55 7 �������� �

HHOOWW--TTOO
Written by Greg Walters PPrrooggrraamm IInn PPyytthhoonn -- PPaarrtt 2299

Alittle while ago, I was
asked to convert a
MySQL database to
SQLite. Looking around

the web for a quick and easy (and
free) solution, I found nothing that
worked with the current version of
MySQL for me. So I decided to go
ahead and “roll my own”.

The MySQL Administrator
program allows you to backup a
database into a flat text file. Many
SQLite browsers allow you to read
a flat sql definition file and create
the database from there. However,
there are many things that MySQL
supports that SQLite doesn't. So
this month, we'll write a conversion
program that reads a MySQL dump
file and creates a SQLite version.

Let's start by looking at the
MySQL dump file. It consists of a
section that creates the database,
and then sections that create each
table within the database followed
by the data for that table, if it's
included in the dump file. (There's
an option to export the table
schema(s) only). Shown above right
is an example of one of the create

table sections.

The first thing that we would
need to get rid of is in the last line.
Everything after the ending
parenthesis needs to go away.
(SQLite does not support an
InnoDB database). In addition to
that, SQLite doesn't support the
“PRIMARY KEY” line. In SQLite, we
set a primary key by using
“INTEGER PRIMARY KEY
AUTOINCREMENT” when we define
the field. The other thing that
SQLite doesn't support is the
“unsigned” keyword.

When it comes to the data, the
“INSERT INTO” statements are also
non-compatible. The problem here
is that SQLite doesn't allow
multiple inserts within the same
statement. Here's a short example
from the MySql dump file. Notice
(right) that the end-of-line marker
is a semicolon.

We will also ignore any
comment lines, and the CREATE
DATABASE and USE statements.
Once we have the converted SQL
file, we'll use a program similar to

DROP TABLE IF EXISTS `categoriesmain`;
CREATE TABLE `categoriesmain` (
`idCategoriesMain` int(10) unsigned NOT NULL

auto_increment,
`CatText` char(100) NOT NULL default '',
PRIMARY KEY (`idCategoriesMain`)

) ENGINE=InnoDB AUTO_INCREMENT=40 DEFAULT
CHARSET=latin1;

INSERT INTO `categoriesmain`
(`idCategoriesMain`,`CatText`) VALUES
(1,'Appetizer'),
(2,'Snack'),
(3,'Barbecue'),
(4,'Cake'),
(5,'Candy'),
(6,'Beverages');

To make this compatible, we need to change this from a single
statement format to a series of single statements like this:

INSERT INTO `categoriesmain`
(`idCategoriesMain`,`CatText`) VALUES (1,'Appetizer');
INSERT INTO `categoriesmain`
(`idCategoriesMain`,`CatText`) VALUES (2,'Snack');
INSERT INTO `categoriesmain`
(`idCategoriesMain`,`CatText`) VALUES (3,'Barbecue');
INSERT INTO `categoriesmain`
(`idCategoriesMain`,`CatText`) VALUES (4,'Cake');
INSERT INTO `categoriesmain`
(`idCategoriesMain`,`CatText`) VALUES (5,'Candy');
INSERT INTO `categoriesmain`
(`idCategoriesMain`,`CatText`) VALUES (6,'Beverages');

full circle magazine #55 8 �������� �

HOWTO - PROGRAM IN PYTHON - PART 29
the public domain program SQLite
Database Browser to actually deal
with the process of creating the
database, tables, and data.

Let's get started. Start a new
project folder and a new python
file. Name it MySQL2SQLite.py.

Shown above right is the import
statement, the class definition, and
the __init__ routine.

This will be a commandline
driven program, so we'll need to
create the “if __name__”
statement, a command line
argument handler, and a usage
routine (if the user doesn't know
how to use the program). This goes
at the very end of the program. All
other code we create will go above
this:

def error(message):

print >> sys.stderr,
str(message)

Below is the handler that does
the printing of the usage
statement.

The DoIt() routine is called if our
program is being run stand-alone
from the command line, which is
the design. However, if we want to
keep this as a library to be included
in another program at another
time, we can just use the class.
Here we set up a number of
variables to make sure that
everything works correctly. The
code shown bottom right then
parses the command line
arguments passed to our program,
and gets things ready for the main
routines.

#!/usr/bin/env python
#====================================
MySQL2SQLite.py
#====================================
IMPORTS
import sys
#====================================

#====================================
BEGIN CLASS MySQL2SQLite
#====================================
class MySQL2SQLite:

def __init__(self):
self.InputFile = ""
self.OutputFile = ""
self.WriteFile = 0
self.DebugMode = 0
self.SchemaOnly = 0
self.DirectMode = False

def DoIt():
#=======================================
Setup Variables
#=======================================
SourceFile = ''
OutputFile = ''
Debug = False
Help = False
SchemaOnly = False
#=======================================

if len(sys.argv) == 1:
usage()

else:
for a in sys.argv:

print a
if a.startswith("Infile="):

pos = a.find("=")
SourceFile = a[pos+1:]

elif a.startswith("Outfile="):
pos = a.find("=")
OutputFile = a[pos+1:]

elif a == 'Debug':
Debug = True

elif a == 'SchemaOnly':
SchemaOnly = True

elif a == '­Help' or a == '­H' or a == '­?':
Help = True

if Help == True:
usage()

r = MySQL2SQLite()
r.SetUp(SourceFile,OutputFile,Debug,SchemaOnly)
r.DoWork()

full circle magazine #55 9 �������� �

When we start the program,
we need to provide at least two
variables on the command line.
These are the Input file, and the
Output file. We also will provide
support for the user to see what
is happening as the program is
running, an option to just create
the tables and not stuff the data,
and for the user to call for help.
Our “normal” command line to
start the program looks like this:

MySQL2SQLite Infile=Foo
Outfile=Bar

where “Foo” is the name of
the MySQL dump file, and “Bar” is
the name of the SQLite sql file
we want the program to create.

You can also call it like this:

MySQL2SQLite Infile=Foo
Outfile=Bar Debug SchemaOnly

Which will add the option to
show the debug messages and to
ONLY create the tables and not
import the data.

Finally if the user asks for help,
we just go to the usage portion of
the program.

Before we continue, let's take

another look at how the command
line argument support works.

When a user enters the program
name from the command line
(terminal), the operating system
keeps track of the information
entered and passes it to the
program just in case there are any
options entered. If no options (also
called arguments) are entered, the
number of arguments is one, which
is the name of the application - in
our case MySQL2SQLite.py. We can
access these arguments by calling
the sys.arg command. If the count

is greater than one, we will access
them in a for loop. We will step
through the list of arguments and
check each one. Some programs
require you to enter the arguments
in a specific order. By using the for
loop approach, the arguments can
be entered in any order. If the user
doesn't supply any arguments, or
uses the help arguments, we show
the usage screen. Shown above is
the routine for that.

Moving on, once we have parsed
the argument set, we instantiate
the class, call the setup routine,

which fills certain variables and
then call the DoWork routine. We'll
start our class now (which is shown
on the next page, bottom right).

This (next page, top right) is the
definition and the __init__ routine.
Here we setup the variables that
we will need as we go through the
code. Remember that right before
we call the DoWork routine, we call
the Setup routine. We take our
empty variables and assign the
correct values to them here. Notice
that there is the ability to not write
to a file, useful for debugging

HOWTO - PROGRAM IN PYTHON - PART 29

def usage():
message = (

'===\n'
'MySQL2SQLite ­ A database converter\n'
'Author: Greg Walters\n'
'USAGE:\n'
'MySQL2SQLite Infile=filename [Outfile=filename] [SchemaOnly] [Debug] [­H­Help­?\n'

' where\n'
' Infile is the MySQL dump file\n'
' Outfile (optional) is the output filename\n'
' (if Outfile is omitted, assumed direct to SQLite\n'
' SchemaOnly (optional) Create Tables, DO NOT IMPORT DATA\n'
' Debug (optional) ­ Turn on debugging messages\n'
' ­H or ­Help or ­? ­ Show this message\n'
'Copyright (C) 2011 by G.D. Walters\n'
'===\n'
)

error(message)
sys.exit(1)

if __name__ == "__main__":
DoIt()

full circle magazine #55 10 �������� �

purposes. We also have the ability
to simply write the schema, or
database structure, without writing
the data. This is helpful if you are
taking a database and starting a
new project without wanting to use
any existing data.

We start off by opening the SQL
Dump file, then setting some
internal scope variables. We also
define some strings to save us
typing later on. Then, if we are to
write to an output file, we open it
and then we start the entire
process. We will read each line of
the input file, process it, and
potentially write it to the output

file. We use a forced while
loop to assist reading each
line, with a break command
when there is nothing left in
the input file. We use
f.readline() to get the line to
work, and assign it to the
variable “line”. Some lines,
we can safely ignore. We'll
simply use an if/elif
statement followed by a
pass statement to
accomplish this (below).

Next we can stop
ignoring things and actually
do something. If we have a
CreateTable statement,

HOWTO - PROGRAM IN PYTHON - PART 29

#====================================
BEGIN CLASS MySQL2SQLite
#====================================
class MySQL2SQLite:

def __init__(self):
self.InputFile = ""
self.OutputFile = ""
self.WriteFile = 0
self.DebugMode = 0
self.SchemaOnly = 0

def SetUp(self, In, Out = '', Debug = False, Schema = 0):
self.InputFile = In
if Out == '':

self.writeFile = 0
else:

self.WriteFile = 1
self.OutputFile = Out

if Debug == True:
self.DebugMode = 1

if Schema == 1:
self.SchemaOnly = 1

Now, we'll deal with the DoWork routine, which is where the actual “magic”
happens.

def DoWork(self):
f = open(self.InputFile)
print "Starting Process"
cntr = 0
insertmode = 0
CreateTableMode = 0
InsertStart = "INSERT INTO "
AI = "auto_increment"
PK = "PRIMARY KEY "
IPK = " INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL"
CT = "CREATE TABLE "
Begin
if self.WriteFile == 1:

OutFile = open(self.OutputFile,'w')

while 1:
line = f.readline()
cntr += 1
if not line:

break
Ignore blank lines, lines that start with

"­­" or comments (/*!)
if line.startswith("­­"): #Comments

pass
elif len(line) == 1: # Blank Lines

pass
elif line.startswith("/*!"): # Comments

pass
elif line.startswith("USE"):

#Ignore USE lines
pass

elif line.startswith("CREATE DATABASE "):
pass

full circle magazine #55 11 �������� �

HOWTO - PROGRAM IN PYTHON - PART 29
we'll start that process. Remember
we defined CT to be equal to
“Create Table”. Here (above right),
we set a variable
“CreateTableMode” to be equal to
1, so we know that's what we are
doing, since each field definition is
on a separate line. We then take
our line, remove the carriage
return, and get that ready to write
to our out file, and, if required,
write it.

Now (middle right) we need to
start dealing with each line within
the create table statements -
manipulating each line to keep
SQLite happy. There are many
things that SQLite won't deal with.
Let's look at a Create Table
statement from MySQL again.

One thing that SQLite will
absolutely have an issue with is the
entire last line after the closing
parenthesis. Another is the line just
above that, the Primary Key line.
Yet another thing is the unsigned
keyword in the second line. It will
take a bit of code (below) to work

around these issues, but we can
make it happen.

First, (third down on the right)
we check to see if the line contains
“auto increment”. We will assume
that this will be the primary key
line. While this might be true 98.6%
of the time, it won't always be.
However, we'll keep it
simple. Next we check to
see if the line starts with “)
”. This will signify this is the
last line of the create table
section. If so, we simply set
a string to close the statement
properly in the variable “newline”,
turn off the CreateTableMode
variable, and, if we are writing to
file, write it out.

Now (bottom right) we use the
information we found about the
auto increment key word. First, we
strip the line of any spurious
spaces, then check to see where
(we are assuming it is there) the
phrase “ int(“ is within the line. We
will be replacing this with the
phrase “ INTEGER PRIMARY KEY

AUTOINCREME
NT NOT NULL”.
The length of
the integer
doesn't matter
to SQLite. Again,
we write it out if
we should.

elif line.startswith(CT):
CreateTableMode = 1
l1 = len(line)
line = line[:l1­1]
if self.DebugMode == 1:

print "Starting Create Table"
print line

if self.WriteFile == 1:
OutFile.write(line)

CREATE TABLE `categoriesmain` (
`idCategoriesMain` int(10) unsigned NOT NULL auto_increment,
`CatText` char(100) NOT NULL default '',
PRIMARY KEY (`idCategoriesMain`)

) ENGINE=InnoDB AUTO_INCREMENT=40 DEFAULT CHARSET=latin1;

elif CreateTableMode == 1:
Parse the line...
if self.DebugMode == 1:

print "Line to process – {0}".format(line)

p1 = line.find(AI)
if line.startswith(") "):

CreateTableMode = 0
if self.DebugMode == 1:

print "Finished Table Create"
newline = ");\n"
if self.WriteFile == 1:

OutFile.write(newline)
if self.DebugMode == 1:

print "Writing Line {0}".format(newline)

elif p1 != ­1:
Line is primary key line
l = line.strip()
fnpos = l.find(" int(")
if fnpos != ­1:

fn = l[:fnpos]
newline = fn + IPK #+ ",\n"
if self.WriteFile == 1:

OutFile.write(newline)
if self.DebugMode == 1:

print "Writing Line {0}".format(newline)

full circle magazine #55 12 �������� �

HOWTO - PROGRAM IN PYTHON - PART 29
Now we look for the phrase

“PRIMARY KEY “ within the line.
Notice the extra space at the end -
that's on purpose. If it arises, we
ignore the line.

elif
line.strip().startswith(PK):

pass

Now (top right) we look for the
phrase “ unsigned “ (again keep the
extra spaces) and replace it with “
“.

That's the end of the create
table routine. Now (below) we
move on to the insert statements
for the data. The InsertStart
variable is the phrase “INSERT INTO
“. We check for that because
MySQL allows for multiple insert
statements in a single command,
but SQLite does not. We need to
make separate statements for each
block of data. We set a variable
called “insertmode” to 1, pull the

“INSERT INTO {Table} {Fieldlist}
VALUES (“ into a reusable variable
(which I'll call our prelude), and
move on.

Now, we check to see if we are
only supposed to work the schema.
If so, we can safely ignore any
portions of the insert statements.
If not, we need to deal with them.

elif self.SchemaOnly == 0:
if insertmode == 1:

We check to see if there is
either “');” or “'),” in our line. In the
case of “');”, this would be the last
line in our insert statement set.

posx = line.find("');")
pos1 = line.find("'),")
l1 = line[:pos1]

This line checks for escaped
single quotes and replaces them.

line =
line.replace("\\'","''")

elif line.find(" unsigned ") != ­1:
line = line.replace(" unsigned "," ")
line = line.strip()
l1 = len(line)
line = line[:l1­1]
if self.WriteFile == 1:

OutFile.write("," + line)
if self.DebugMode == 1:

print "Writing Line {0}".format(line)

Otherwise, we can deal with the line.

else:
l1 = len(line)
line = line.strip()
line = line[:l1­4]
if self.DebugMode == 1:

print "," + line
if self.WriteFile == 1:

OutFile.write("," + line)

elif line.startswith(InsertStart):
if insertmode == 0:

insertmode = 1
Get tablename and field list here
istatement = line
Strip CR/LF from istatement line
l = len(istatement)
istatement = istatement[:l­2]

if posx != ­1:
l1 = line[:posx+3]
insertmode = 0
if self.DebugMode == 1:

print istatement + l1
print "­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­"

if self.WriteFile == 1:
OutFile.write(istatement + l1+"\n")

Otherwise,wejointhepreludetothevalue
statement and end it with a semicolon.

elif pos1 != ­1:
l1 = line[:pos1+2]
if self.DebugMode == 1:

print istatement + l1 + ";"
if self.WriteFile == 1:

OutFile.write(istatement + l1 + ";\n")

full circle magazine #55 13 �������� �

Greg Walters is owner of RainyDay
Solutions, LLC, a consulting company
in Colorado and has been
programming since 1972. He enjoys
cooking, hiking, music, and spending
time with his family. His website is
www.thedesignatedgeek.com.

HOWTO - PROGRAM IN PYTHON - PART 29
If we have a closing statement

(“);”), that is the end of our insert
set, and we can create the
statement by joining the prelude to
the actual value statement. This is
shown on the previous page,
bottom right.

This all works (top right) if the
last value we have in the insert
statement is a quoted string.
However, if the last value is a
numeric value, we have to deal
with things a bit differently. You'll
be able to pick out what we are
doing here.

Finally, we close our input file,
and, if we are writing an output
file, we close that as well.

f.close()
if self.WriteFile == 1:

OutFile.close()

Once you have your converted
file, you can use SQLite Database
Browser to fill in the database
structure and data.

This code should work over 90%
of the time as is. There might be
somethings we missed due to
other issues, hence the reason for
the debug mode. However, I've
tested this on multiple files and

had no problems.

As always, the code is up at
PasteBin at
http://pastebin.com/cPvzNT7T.

See you next time.

else:
if self.DebugMode == 1:

print "Testing line {0}".format(line)
pos1 = line.find("),")
posx = line.find(");")
if self.DebugMode == 1:

print "pos1 = {0}, posx = {1}".format(pos1,posx)
if pos1 != ­1:

l1 = line[:pos1+1]
if self.DebugMode == 1:

print istatement + l1 + ";"
if self.WriteFile == 1:

OutFile.write(istatement + l1 + ";\n")
else:

insertmode = 0
l1 = line[:posx+1]
if self.DebugMode == 1:

print istatement + l1 + ";"
if self.WriteFile == 1:

OutFile.write(istatement + l1 + ";\n")

full circle magazine #58 8 �������� �

HHOOWW--TTOO
Written by Greg D. Walters BBeeggiinnnniinngg PPyytthhoonn -- PPaarrtt 3300

Thismonth, we'll explore
yet another GUI designer,
this time for Tkinter. Many
people have an issue with

Tkinter because it doesn't offer a
built-in designer. While I've shown
you how to easily design your
applications without a designer, we
will examine one now. It's called
Page. Basically it's a version of
Visual TCL with Python support on
top. The current version is 3.2 and
can be found at
http://sourceforge.net/projects/pa
ge/files/latest/download.

Prerequisites

You need TCK/TK 8.5.4 or later,
Python 2.6 or later, and pyttk -
which you can get (if you don't
already have it) from
http://pypi.python.org/pypi/pyttk.
You probably have all of these with
the possible exception of pyttk.

Installation

You can't really ask for an easier
installation routine. Simply unpack

the distribution file into a folder of
your choice. Run the script called
“configure” from the folder where
you just unpacked everything. This
will create your launch script called
“page” which you use to get
everything going. That's it.

Learning Page

When you start Page, you'll get
three windows (forms). One is a
“launch pad”, one is a toolbox, and
one shows the Attribute Editor.

To start a new project, click on
the Toplevel button in the toolbox.

This creates your main form.
You can move it wherever you wish
on your screen. Next, and from
now on, click on a widget in the
tool box and then click where you
want it on the main form.

For now, let's do a button. Click
on the Button button on the
toolbox, and then click somewhere
on the main form.

Next, in the launch pad form,
click on Window and select
Attribute Editor (if it's not already
showing). Your single button
should be highlighted already, so
move it around the form and when
you release the mouse button you
should see the position change in
the attribute editor form under 'x
position' and 'y position'.

Here we can set other
attributes such as the text on the
button (or most any other widget),
the alias for the widget (the name
we will refer to in our code), color,
the name we will call it and more.
Near the bottom of the attribute
editor is the text field. This is the
text that appears to the user for, in
this case, the button widget. Let's
change this from “button” to “Exit”.
Notice that now the button says
“Exit”. Now resize the form to just
show the button and recenter the
button in the form.

Next click in the main form
someplace where the button isn't.
The attribute editor form now
shows the attributes for the main
form. Find the “title” field and

full circle magazine #58 9 �������� �

HOWTO - BEGINNING PYTHON 30
change this from “New Toplevel 1”
to “Test Form”.

Now, before we save our
project, we need to create a folder
to hold our project files. Create a
folder somewhere on your drive
called “PageProjects”. Now, in the
launch pad window, select File then
Save As. Navigate to your
PageProjects folder, and, in the
dialog box, type TestForm.tcl and
click the Save button. Notice this is
saved as a TCL file, not a Python
file. We'll create the python file
next.

In the launch pad, find the
Gen_Python menu item and click it.
Select Generate Python and a new
form appears.

Page has generated (as the
name suggests) our python code
for us and placed it in a window for

us to view. At the bottom of this
form, are three buttons...Save, Run,
and Close.

Click Save. If, at this point, you
were to look in your PageProjects
folder, you will see the python file
(TestForm.py). Now click on the
Run button. In a few seconds, you'll
see the project start up. The
button is not connected to
anything yet, so it won't do
anything if you click on it. Simply
close the form with the “X” in the
corner of the window. Now close
the Python Console window with
the close button at the bottom
right.

Back at our main form, highlight

the Exit button and right click on it.
Select “Bindings...”. Under the
menu is a set of buttons.

The first on the left allows you
to create a new binding. Click on
“Button-1”. This allows us to enter
the binding for the left mouse
button. In the window on the right,
type “Button1Click”.

Save and generate the python
code again. Scroll down in the
Python Console to the bottom of
the file. Above the “class
Test_Form” code is the function we
just asked to be created. Notice
that at this point, it simply is
passed. Look further down and
you'll see the code that creates and
controls our button. Everything is
done for us already. However, we
still have to tell the button what to
do. Close the Python Console and
we'll continue.

On the launch pad, click Window
then select Function List. Here we
will write our method to close the
window.

The first button on the left is
the Add button. Click it. In the
Function box, type
“py:Button1Click” and, in the
Arguments box, type “p1”, and

full circle magazine #58 10 �������� �

change the text in the lower box
to...

def Button1Click(p1):
sys.exit()

Click on the checkmark and we
are done with this.

Next we have to bind this
routine to the button. Select the
button in the form, right click it,
and select “Bindings...”. As before,
click on the far left button on the
toolbar and select Button-1. This is
the event for the left mouse
button click. In the right text box,
enter “Button1Click”. Make sure
you use the same case that you did
for the Function we just created.
Click the checkmark on the right
side.

Now save and generate your

python code.

You should see the following
code near the bottom, but
OUTSIDE of the Test_Form class...

def Button1Click(p1) :

sys.exit()

And the last line of the class
should be...

self.Button1.bind('<Button­
1>',Button1Click)

Now, if you run your code and
click on the Exit button, the form
should close properly.

Moving Forward

Now let's do something more
complicated. We'll create a demo
showing some of the widgets that
are available. First close Page and
restart it. Next, create a new
Toplevel form. Add two frames,
one above the other and expand
them to pretty much take up the
entire width of the form. In the top
frame, place a label, and, using the
attributes editor, change the text
to “Buttons:”. Next, add two
buttons along the horizontal plane.
Change the text of the left one to

“Normal”, and the right one to
“Sunken”. While the sunken button
is selected, change the relief to
“sunken” and name it btnSunken.
Name the “Normal” button
“btnNormal”. Save this project as
“Demos.tcl”.

Next, place in the lower frame a
label saying “Radio Buttons” and
four radio buttons like in the image
below. Finally, place an Exit button
below the bottom frame.

Before we work on the bindings,
let's create our click functions.
Open the Function List and create
two functions. The first should be
called btnNormalClicked and the
other btnSunkenClicked. Make sure
you set the arguments box to
include p1. Here's the code you
should have for them...

def btnNormalClicked(p1):

print "Normal Button Clicked"

def btnSunkenClicked(p1) :

print "Sunken Button Clicked"

Let's add our button bindings.
For each button, right click it,
select “Bindings...”, and add, as
before, a binding to the functions
we created. For the normal button,
it would be “btnNormalClicked”,
and for the sunken button it would
be btnSunkenClicked. Save and
generate your code. Now, if you
were to test the program under
the “Run” option of the Python
Console, and click any of the
buttons, you won't see anything
happen. However, when you close
the application, you should see the
print responses. This is normal for
Page and if you simply run it from
the command line as you normally
do, things should work as
expected.

Now for our radio buttons. We
have grouped them in two
“clusters”. The first two (Radio 1
and Radio 2) will be cluster 1 and
the other two will be cluster 2.
Click on Radio1 and in the
Attribute Editor, set the value to 0
and the variable to “rbc1”. Set the
variable for Radio 2 to “rbc1” and
the value to 1. Do the same thing

HOWTO - BEGINNING PYTHON 30

full circle magazine #58 11 �������� �

Greg Walters is owner of RainyDay
Solutions, LLC, a consulting company
in Colorado and has been
programming since 1972. He enjoys
cooking, hiking, music, and spending
time with his family. His website is
www.thedesignatedgeek.net.

for Radio 3 and Radio 4 but for
both of these set the variable to
“rbc2”. If you want, you can deal
with the click of the radiobuttons
and print something to the
terminal, but for now, the
important thing is that the clusters
work. Clicking Radio1 will deselect
Radio2 and not influence Radio3 or
Radio4, and the same for Radio2
and so on.

Finally, you should create a
function for the Exit button, and
bind it to the button like we did in
the first example.

If you've been following along
as we have done our other Tkinter
applications, you should be able to
understand the code shown above
right. If not, please go back a few
issues for a full discussion of this
code.

You can see that using Page
makes the basic design process
much easier than doing it yourself.
We've only scratched the surface of
what Page can do, and we'll start
doing something much more
realistic next time.

The python code can be found
on pastebin at
http://pastebin.com/qq0YVgTb.

One note before we go for this
month. You might have noticed
that I've missed a couple of issues.
This is due to my wife being
diagnosed with cancer last year. As
hard as I have tried to keep things
from falling through the cracks, a
number of things have. One of
these things is my old domain/web
site at
www.thedesignatedgeek.com. I
blew it and missed the renewal.
Due to this, the domain was sold
out from under me. I have set up
www.thedesignatedgeek.net with
all the old stuff. I will be working
hard the next month to bring it all
up to date.

See you next time.

HOWTO - BEGINNING PYTHON 30

def set_Tk_var():
These are Tk variables passed to Tkinter and must
be defined before the widgets using them are created.
global rbc1
rbc1 = StringVar()
global rbc2
rbc2 = StringVar()
def btnExitClicked(p1) :
sys.exit()
def btnNormalClicked(p1) :
print "Normal Button Clicked"
def btnSunkenClicked(p1) :
print "Sunken Button Clicked"

The Ubuntu Podcast covers all
the latest news and issues facing
Ubuntu Linux users and Free
Software fans in general. The
show appeals to the newest user
and the oldest coder. Our
discussions cover the
development of Ubuntu but
aren’t overly technical. We are
lucky enough to have some
great guests on the show, telling
us first hand about the latest
exciting developments they are
working on, in a way that we can
all understand! We also talk
about the Ubuntu community
and what it gets up to.

The show is presented by
members of the UK’s Ubuntu
Linux community. Because it is
covered by the Ubuntu Code of
Conduct it is suitable for all.

The show is broadcast live every
fortnight on a Tuesday evening
(British time) and is available for
download the following day.

podcast.ubuntu-uk.org

full circle magazine #59 7 �������� �

HHOOWW--TTOO
Written by Greg D. Walters BBeeggiinnnniinngg PPyytthhoonn -- PPaarrtt 3311

After our last meeting you
should have a fairly good
idea of how to use Page.
If not, please read last

month's article. We'll continue this
time by creating a file list
application with a GUI. The goal
here is to create a GUI application
that will recursively walk through a
directory, looking for files with a
defined set of extensions, and
display the output in a treeview.
For this example we will look for
media files with the extensions of
“.avi”, “.mkv”, “.mv4”, “.mp3” and
“.ogg”.

This time, the text might seem a
bit terse in the design portion. All
I'm going to do is give you
directions for placement of
widgets and the required
attributes and values like this...

Widget

Attribute: Value

I will only quote text string
when it is needed. For example for
one of the buttons, the text should
be set to “...”.

Here's what the GUI of our
application will look like...

As you can see, we have our
main form, an exit button, a text
entry box with a button that will
call up an ask for directory dialog
box, 5 check boxes for extension
selecting extension types, a “GO!”
button to actually start the
processing and a treeview to
display our output.

So, let's get started. Fire up
Page and create a new top level
widget. Using the Attribute Editor
set the following attributes.

Alias: Searcher
Title: Searcher

Be sure to save often. When you
save the file, save it as “Searcher”.
Remember, Page puts the .tcl
extension for you and when you
finally generate the python code, it
will be saved in the same folder.

Next add a frame. It should go
at the very top of the main frame.
Set the attributes as follows.

Width: 595
Height: 55
x position: 0
y position: 0

In this frame, add a button. This
will be our Exit button.

Alias: btnExit
Text: Exit

Move this close to the center of
the frame or close to the frame's
right side. I set mine to X 530 and Y
10.

Create another frame.

Width: 325
Height: 185
y position: 60

Here is what this frame will look

like, to give you a guide going
forward through this section.

In this frame, add a label. Set
the text attribute to “Path:”. Move
it close to the top left of the frame.

In the same frame, add an entry
widget.

Alias: txtPath
Text: FilePath
Width: 266
Height: 21

Add a button to the right of the
entry widget.

Alias: btnSearchPath
Text: “...” (no quotes)

Add five (5) check buttons. Put
them in the following order...

full circle magazine #59 8 �������� �

HOWTO - BEGINNING PYTHON 31
x
x x
x x

The three check buttons on the
left are for video files and the two
on the right are for audio files. We
will deal with the three on the left
first, then the two on the right.

Alias: chkAVI
Text: “.avi” (no quotes)
Variable: VchkAVI

Alias: chkMKV
Text: “.mkv” (no quotes)
Variable: VchkMKV

Alias: chkMV4
Text: “.mv4” (no quotes)
Variable: VchkMV4

Alias: chkMP3
Text: “.mp3” (no quotes)
Variable: VchkMP3

Alias: chkOGG
Text: “.ogg” (no quotes)
Variable: VchkOGG

Finally, in this frame add a
button somewhere below the five
check boxes and somewhat
centered within the frame.

Alias: btnGo
Text: GO!

Now add one more frame below
our last frame.

Width: 565
Height: 265

I placed mine around X 0 Y 250.
You might have to resize your main
form to have the entire frame
show. Within this frame, add a
Scrolledtreeview widget.

Width: 550
Height: 254
X Position: 10
Y Position: 10

There. We've designed our GUI.
Now all that is left to do is create
our function list and bind the
functions to our buttons.

In the Function list window, click
the New button (the far left
button). This brings up the new
function editor. Change the text in
the Function entry box from “py:
xxx” to “py:btnExitClick()”. In the
arguments entry box type “p1”. In
the bottom multiline entry box,
change the text to:

def btnExitClick(p1):

sys.exit()

Notice that this is not indented.
Page will do that for us when it
creates the python file.

Next create another function
called btnGoClick. Remember to
add a passed parameter of “p1”.
Leave the “pass” statement. We'll
change that later.

Finally, add another function
called “btnSearchPath”. Again,
leave the pass statement.

Lastly, we need to bind the
buttons to the functions we just
created.

Right-click on the exit button
we created, select Bind. A large
box will pop up. Click on the New
binding button, Click on Button-1
and change the word “TODO” in
the right text entry box to
“btnExitClick”. Do NOT include the
parens () here.

Bind the GO button to
btnGoClick and the “...” button to
btnSearchPathClick.

Save your GUI and generate the
python code.

Now all we have left is to create
the code that “glues” the GUI
together.

Open up the code we just

generated in your favorite editor.
Let's start off by examining what
Page created for us.

At the top of the file is our
standard python header and a
single import statement to import
the sys library. Next is some rather
confusing (at first glance) code.
This basically looks at the version
of python you are trying to run the
application in and then to import
the correct versions of the tkinter
libraries. Unless you are using
python 3.x, you can basically ignore
the last two.

We'll be modifying the 2.x code
portion to import other tkinter
modules in a few moments.

Next is the “vp_start_gui()”
routine. This is the program's main
routine. This sets up our gui, sets
the variables we need, and then
calls the tkinter main loop. You
might notice the line “w = None”
below this. It is not indented and it
isn't supposed to be.

Next are two routines
(create_Searcher and
destroy_Searcher) that are used to
replace the main loop routine if we
are calling this application as a

full circle magazine #59 9 �������� �

library. We don't need to worry
about these.

Next is the “set_Tk_var”
routine. We define the tkinter
variables used that need to be set
up before we create the widgets.
You might recognize these as the
text variable for the FilePath entry
widget and the variables for our
check boxes. The next three
routines here are the functions we
created using the function editor
and an “init()” function.

Run the program now. Notice
that the check buttons have grayed
out checks in them. We don't want
that in our “release” app, so we'll
create some code to clear them
before the form is displayed to the
user. The only functioning thing
other than the check boxes is the
Exit button.

Go ahead and end the program.

Now, we'll take a look at the
class that actually holds the GUI
definition. That would be “class
Searcher”. Here is where all the
widgets are defined and placed in
our form. You should be familiar
with this by now.

Two more classes are created
for us that hold the code to
support the scrolled tree view. We
don't have to change any of this. It
was all created by Page for us.

Now let's go back to the top of
the code and start modifying.

We need to import a few more
library modules, so under the
“import sys” statement, add...

import os

from os.path import join,
getsize, exists

Now find the section that has
the line “py2 = True”. As we said
before, this is the section that
deals with the tkinter imports for
Python version 2.x. Below the
“import ttk”, we need to add the
following to support the FileDialog
library. We also need to import the
tkFont module.

import tkFileDialog

import tkFont

Next we need to add some
variables to the “set_Tk_var()”
routine. At the bottom of the
routine, add the following lines...

global exts, FileList

exts = []

FileList=[]

Here we create two global
variables (exts and FileList) that
will be accessed later on in our
code. Both are lists. “exts” is a list
of the extensions that the user
selects from the GUI. “FileList"
holds a list of lists of the matching
files found when we do our search.
We'll use that to populate the
treeview widget.

Since our “btnExitClick” is
already done for us by Page, we'll
deal with the “btnGoClick” routine.
Comment out the pass statement
and add the code so it looks like
this...

def btnGoClick(p1) :

#pass

BuildExts()

fp = FilePath.get()

e1 = tuple(exts)

Walkit(fp,e1)

LoadDataGrid()

This is the routine that will be
called when the user clicks the
“GO!” button. We call a routine
called “BuildExts” which creates
the list of the extensions that the
user has selected. Then we get the
path that the user has selected
from the AskDirectory dialog and
assign that to the fp variable. We
then create a tuple from the
extension list, which is needed
when we check for files. We then
call a routine called “Walkit”,
passing the target directory and
the extension tuple.

Finally we call a routine called
“LoadDataGrid”.

Next we need to flesh out the
“btnSearchPathClick” routine.
Comment out the pass statement
and change the code to look like
this...

def btnSearchPathClick(p1) :

#pass

path =
tkFileDialog.askdirectory()
#**self.file_opt)

FilePath.set(path)

HOWTO - BEGINNING PYTHON 31

full circle magazine #59 10 �������� �

The init routine is next. Again,
make the code look like this...

def init():

#pass

Fires AFTER Widgets
and Window are created...

global treeview

BlankChecks()

treeview =
w.Scrolledtreeview1

SetupTreeview()

Here we create a global called
“treeview”. We then call a routine
that will clear the gray checks from
the check boxes, assign the
“treeview” variable to point to the
Scrolled treeview in our form and
call “SetupTreeview” to set the
headers for the columns.

Here's the code for the
BlankChecks routine which needs
to be next.

def BlankChecks():

VchkAVI.set('0')

VchkMKV.set('0')

VchkMP3.set('0')

VchkMV4.set('0')

VchkOGG.set('0')

Here, all we are doing is setting
the variables (which automatically
sets the check state in our check
boxes) to “0”. If you remember,
whenever the check box is clicked,
this variable is automatically
updated. If the variable is changed
by our code, the check box
responds as well. Now (above right)
we'll deal with the routine that
builds the list of extensions from
what the user has clicked.

Cast your memory
back to my ninth article in
FCM#35. We wrote some
code to create a catalog
of MP3 files. We'll use a
shortened version of that
routine (middle right).
Refer back to FCM#35 if
you have questions about
this routine.

Next (bottom right) we
call the SetupTreeview
routine. It's fairly
straightforward. We define a
variable “ColHeads” with the
headings we want in each
column of the treeview. We

do this as a list. We then set the
heading attribute for each column.
We also set the column width to
the size of this header.

Finally we have to create the
“LoadDataGrid” routine (next
page, top right) which is where we
load our data into the treeview.
Each row of the treeview is one
entry in the FileList list variable.
We also adjust the width of each
column (again) to match the size of
the column data.

That's it for the first blush of

the application. Give it a run and
see how we did. Notice that if you
have a large number of files to go
through, the program looks like it's
not responding. This is something

HOWTO - BEGINNING PYTHON 31

def BuildExts():
if VchkAVI.get() == '1':

exts.append(".avi")
if VchkMKV.get() == '1':

exts.append(".mkv")
if VchkMP3.get() == '1':

exts.append(".mp3")
if VchkMV4.get() == '1':

exts.append(".mv4")
if VchkOGG.get() == '1':

exts.append(".ogg")

def Walkit(musicpath,extensions):
rcntr = 0
fl = []
for root, dirs, files in os.walk(musicpath):

rcntr += 1 # This is the number of folders we have walked
for file in [f for f in files if f.endswith(extensions)]:

fl.append(file)
fl.append(root)
FileList.append(fl)
fl=[]

def SetupTreeview():
global ColHeads
ColHeads = ['Filename','Path']
treeview.configure(columns=ColHeads,show="headings")
for col in ColHeads:

treeview.heading(col, text = col.title(),
command = lambda c = col: sortby(treeview, c, 0))

adjust the column's width to the header string
treeview.column(col, width =

tkFont.Font().measure(col.title()))

full circle magazine #59 11 �������� �

HOWTO - BEGINNING PYTHON 31
that needs to be fixed. We'll create
routines to change our cursor from
the default to a “watch” style
cursor and back so when we do
something that takes a long time,
the user will notice.

In the “set_Tk_var” routine, add
the following code at the bottom.

global
busyCursor,preBusyCursors,bus
yWidgets

busyCursor = 'watch'

preBusyCursors = None

busyWidgets = (root,)

What we do here is set up
global variables, assign them and
then we set the widget(s) (in
busyWidgets) we wish to respond
to the cursor change. In this case
we set it to root which is our full
window. Notice that this is a tuple.

Next we create two routines to
set and unset the cursor. First the
set routine, which we will call
“busyStart”. After our
“LoadDataGrid” routine, insert the
code shown middle right.

We first check to see if a value
was passed to “newcursor”. If not,
we default to the busyCursor. Then

we walk through the
busyWidgets tuple
and set the cursor to
whatever we want.

Now put the code
shown bottom right
below it.

In this routine, we
basically reset the
cursor for the widgets
in our busyWidget
tuple back to our
default cursor.

Save and run your
program. You should
find that the cursor
changes
whenever you
have a long list of
files to go
through.

While this
application
doesn't really do
much but show
you how to use
Page to create
really fast code development. From
today's article, you can see how
having a good design of your GUI
ahead of time can make the
development process easy and

fairly painless.

The tcl file is saved in pastebin
at http://pastebin.com/AA1kE4Dy
and the python code is saved at

http://pastebin.com/VZm5un3e.

See you next time.

def LoadDataGrid():
global ColHeads
for c in FileList:

treeview.insert('','end',values=c)
adjust column's width if necessary to fit each value
for ix, val in enumerate(c):

col_w = tkFont.Font().measure(val)
if treeview.column(ColHeads[ix],width=None)<col_w:

treeview.column(ColHeads[ix], width=col_w)

def busyStart(newcursor=None):
global preBusyCursors
if not newcursor:

newcursor = busyCursor
newPreBusyCursors = {}
for component in busyWidgets:

newPreBusyCursors[component] = component['cursor']
component.configure(cursor=newcursor)
component.update_idletasks()
preBusyCursors = (newPreBusyCursors, preBusyCursors)

def busyEnd():
global preBusyCursors
if not preBusyCursors:

return
oldPreBusyCursors = preBusyCursors[0]
preBusyCursors = preBusyCursors[1]
for component in busyWidgets:

try:
component.configure(cursor=oldPreBusyCursors[component])

except KeyError:
pass

component.update_idletasks()

