
THE INDEPENDENT MAGAZINE FOR THE UBUNTU LINUX COMMUNITY

UBUNTU DEVELOPMENT SERIES SPECIAL EDITION

SINGLE TOPIC SERIES FROM MAGAZINE ISSUES #49 - #52SINGLE TOPIC SERIES FROM MAGAZINE ISSUES #49 - #52

Full Circle

Full Circle Magazine is neither affiliated, with nor endorsed by, Canonical Ltd.

Full Circle Magazine Specials

Full Circle Magazine

The articles contained in this magazine are released under the Creative Commons Attribution-Share Alike 3.0
Unported license. This means you can adapt, copy, distribute and transmit the articles but only under the following conditions:

You must attribute the work to the original author in some way (at least a name, email or URL) and to this magazine by name ('full circle magazine') and
the URL www.fullcirclemagazine.org (but not attribute the article(s) in any way that suggests that they endorse you or your use of the work). If you alter,
transform, or build upon this work, you must distribute the resulting work under the same, similar or a compatible license.
Full Circle Magazine is entirely independent of Canonical, the sponsor of Ubuntu projects and the views and opinions in the magazine should in
no way be assumed to have Canonical endorsement.

Please note: this Special
Edition is provided with
absolutely no warranty
whatsoever; neither the
contributors nor Full Circle
Magazine accept any
responsibility or liability for
loss or damage resulting from
readers choosing to apply this
content to theirs or others
computers and equipment.

About Full Circle

Full Circle is a free,
independent, magazine
dedicated to the Ubuntu
family of Linux operating
systems. Each month, it
contains helpful how-to
articles and reader-
submitted stories.

Full Circle also features a
companion podcast, the Full
Circle Podcast which covers
the magazine, along with
other news of interest.

Welcome to another 'single-topic special'
In response to reader requests, we are assembling the
content of some of our serialised articles into dedicated
editions.

For now, this is a straight reprint of the series 'Ubuntu
Development', Parts 1-4, by Daniel Holbach from issues
#49 through #52; nothing fancy, just the facts.

Please bear in mind the original publication date; current
versions of hardware and software may differ from those
illustrated, so check your hardware and software versions
before attempting to emulate the tutorials in these special
editions. You may have later versions of software installed
or available in your distributions' repositories.

Enjoy!

Find Us

Website:
http://www.fullcirclemagazine.org/

Forums:
http://ubuntuforums.org/
forumdisplay.php?f=270

IRC: #fullcirclemagazine on
chat.freenode.net

Editorial Team

Editor: Ronnie Tucker
(aka: RonnieTucker)
ronnie@fullcirclemagazine.org

Webmaster: Rob Kerfia
(aka: admin / linuxgeekery-
admin@fullcirclemagazine.org

Podcaster: Robin Catling
(aka RobinCatling)
podcast@fullcirclemagazine.org

Communications Manager:
Robert Clipsham
(aka: mrmonday) -
mrmonday@fullcirclemagazine.org

http://www.fullcirclemagazine.org/
http://ubuntuforums.org/forumdisplay.php?f=270
http://ubuntuforums.org/forumdisplay.php?f=270
mailto:ronnie@fullcirclemagazine.org
mailto:admin@fullcirclemagazine.org
mailto:podcast@fullcirclemagazine.org
mailto:mrmonday@fullcirclemagazine.org

full circle magazine #49 17 contents ^

HHOOWW--TTOO
Written by Daniel Holbach IInnttrroo TToo UUbbuunnttuu DDeevveellooppmmeenntt

Ubuntu is made up of
thousands of different
components, written in
many different

programming languages. Every
component - be it a software
library, a tool, or a graphical
application - is available as a
source package. Source packages
in most cases consist of two parts:
the actual source code, and
metadata. Metadata includes the
dependencies of the package,
copyright and licensing
information, and instructions on
how to build the package. Once
this source package is compiled,
the build process provides binary
packages, which are the .deb files
users can install.

Every time a new version of an
application is released, or when
someone makes a change to the
source code that goes into
Ubuntu, the source package must
be uploaded to the build machines
to be compiled. The resulting
binary packages then are
distributed to the archive and its
mirrors in different countries. The
URLs in /etc/apt/sources.list point

to an archive or mirror. Every day
CD images are built for a selection
of different Ubuntu flavours.
Ubuntu Desktop, Ubuntu Server,
Kubuntu, and others, specify a list
of required packages that get on
the CD. These CD images are then
used for installation tests, and
provide the feedback for further
release planning.

Ubuntu’s development is very
much dependent on the current
stage of the release cycle. We
release a new version of Ubuntu
every six months, which is possible
only because we have established

strict freeze dates. With every
freeze date that is reached,
developers are expected to make
fewer, less-intrusive changes.
Feature Freeze is the first big
freeze date after the first half of
the cycle has passed. At this stage,
features must be largely
implemented. The rest of the cycle
is supposed to be focused on
fixing bugs. After that, the user
interface, then the
documentation, the kernel, etc,
are frozen, then the beta release is
put out which receives a lot of
testing. From the beta release
onwards, only critical bugs get

fixed, and a release candidate
release is made, and if it does not
contain any serious problems, it
becomes the final release.

Thousands of source packages,
billions of lines of code, and
hundreds of contributors, require
a lot of communication and
planning to maintain high
standards of quality. At the
beginning of each release cycle,
we have the Ubuntu Developer
Summit where developers and
contributors come together to
plan the features of the next
releases. Every feature is

full circle magazine #49 18 contents ^

HOWTO - INTRO TO UBUNTU DEVELOPMENT
discussed by its stakeholders, and
a specification is written that
contains detailed information
about its assumptions,
implementation, the necessary
changes in other places, how to
test it, and so on. This is all done in
an open and transparent fashion,
so even if you cannot attend the
event in person, you can
participate remotely and listen to
a streamcast, chat with
attendants, and subscribe to
changes of specifications - so you
are always up to date.

Not every single change can be
discussed in a meeting though,
particularly because Ubuntu relies
on changes that are done in other
projects. That is why contributors
to Ubuntu constantly stay in touch.
Most teams or projects use
dedicated mailing lists to avoid too
much unrelated noise. For more
immediate coordination,
developers and contributers use
Internet Relay Chat (IRC). All
discussions are open and public.

Another important tool
regarding communication is bug
reports. Whenever a defect is
found in a package or piece of
infrastructure, a bug report is filed
in Launchpad. All information is

collected in that report and its
importance, status, and assignee,
updated when necessary. This
makes it an effective tool to stay
on top of bugs in a package or
project, and organise the workload.

Most of the software available
through Ubuntu is not written by
Ubuntu developers themselves.
Most of it is written by developers
of other Open Source projects, and
then integrated into Ubuntu.
These projects are called
“Upstreams”, because their source
code flows into Ubuntu, where we
“just” integrate it. The relationship
to Upstreams is critically
important to Ubuntu. It is not just
code that Ubuntu gets from
Upstreams, but it is also that

Upstreams get users, bug reports,
and patches, from Ubuntu (and
other distributions).

The most important Upstream
for Ubuntu is Debian. Debian is the
distribution that Ubuntu is based
on, and many of the design
decisions regarding the packaging
infrastructure are made there.
Traditionally, Debian has always
had dedicated maintainers for
every single package or dedicated
maintenance teams. In Ubuntu
there are teams that have an
interest in a subset of packages
too, and naturally every developer
has a special area of expertise, but
participation (and upload rights)
generally is open to everyone who
demonstrates ability and

willingness.

Getting a change into Ubuntu
as a new contributor is not as
daunting as it seems, and can be a
very rewarding experience. It is
not only about learning something
new and exciting, but also about
sharing the solution, and solving a
problem for millions of users out
there.

Open Source Development
happens in a distributed world
with different goals and different
areas of focus. For example, there
might be the case that a particular
Upstream might be interested in
working on a new big feature,
while Ubuntu, because of the tight
release schedule, might be

full circle magazine #49 19 contents ^

interested in shipping a solid
version with just an additional bug
fix. That is why we make use of
“Distributed Development”, where
code is being worked on in various
branches that are merged with
each other after code reviews and
sufficient discussion.

In the example mentioned
above, it would make sense to ship
Ubuntu with the existing version
of the project, add the bugfix, get
it into Upstream for their next
release, and ship that (if suitable)
in the next Ubuntu release. It
would be the best possible
compromise and a situation where
everybody wins.

To fix a bug in Ubuntu, you
would first get the source code for
the package, then work on the fix,
document it so it is easy to
understand for other developers

and users, then build the package
to test it. After you have tested it,
you can easily propose the change
to be included in the current
Ubuntu development release. A
developer with upload rights will
review it for you, and then get it
integrated into Ubuntu.

When trying to find a solution,
it is usually a good idea to check
with Upstream and see if the
problem (or a possible solution) is
known already, and, if not, do your
best to make the solution a
concerted effort. Additional steps
might involve getting the change
backported to an older, still
supported, version of Ubuntu, and
forwarding it to Upstream.

The most important
requirements for success in
Ubuntu development are having a
knack for “making things work

again,” not being afraid
to read documentation
and ask questions, being
a team player, and
enjoying some detective
work.

Good places to ask
your questions are
ubuntu-motu-
mentors@lists.ubuntu.co
m and #ubuntu-motu on
irc.freenode.net. You will
easily find a lot of new
friends and people with
the same passion that
you have: making the
world a better place by
making better Open
Source software.

A PLEA ON BEHALF OF THE
PODCAST PARTY

As you heard in episode #15 of the
podcast, we're calling for opinion topics
for that section of the show.

Instead of us having a rant about
whatever strikes us, why not prompt us
with a topic and watch for the mushroom
clouds over the horizon! It's highly
unlikely that the three of us will agree.

Or, an even more radical thought, send us
an opinion by way of a contribution!

You can post comments and opinions on
the podcast page at
fullcirclemagazine.org, in our Ubuntu
Forums section, or email
podcast@fullcirclemagazine.org. You can
also send us a comment by recording an
audio clip of no more than 30 seconds
and sending it to the same address.
Comments and audio may be edited for
length. Please remember this is a
family-friendly show.

It would be great to
have contributors come
on the show and
express an opinion in
person.

HOWTO - INTRO TO UBUNTU DEVELOPMENT

full circle magazine #50 17 contents ^

HHOOWW--TTOO
Written by Daniel Holbach UUbbuunnttuu DDeevveellooppmmeenntt PPtt.. 22-- SSeett UUpp

There are a number of
things you need to do to
get started developing
for Ubuntu. This article is

designed to get your computer set
up so that you can start working
with packages, and upload your
packages to Launchpad. Here’s
what we’ll cover:

• Installing packaging-related
software. This includes:
• Ubuntu-specific packaging

utilities
• Encryption software so your

work can be verified as being done
by you
• Additional encryption software

so you can securely transfer files
• Creating and configuring your
account on Launchpad
• Setting up your development
environment to help you do local
builds of packages, interact with
other developers, and propose
your changes on Launchpad.

Note: It is advisable to do
packaging work using the current
development version of Ubuntu.
Doing so will allow you to test

changes in the same environment
where those changes will actually
be applied and used.

Don’t worry, though, the
Ubuntu development release wiki
page
(https://wiki.ubuntu.com/UsingDev
elopmentReleases) shows a
variety of ways to safely use the
development release.

Install Basic Packaging
Software

There are a number of tools
that will make your life as an
Ubuntu developer much easier.
You will encounter these tools
later in this guide. To install most
of the required tools, run this
command:

sudo apt-get install gnupg
pbuilder ubuntu-dev-tools
bzr-builddeb apt-file

This command will install the
following software:

gnupg – GNU Privacy Guard
contains tools you will need to

create a cryptographic key with
which you will sign files you want
to upload to Launchpad.
pbuilder – a tool to do
reproducible builds of a package in
a clean and isolated environment.
ubuntu-dev-tools (and devscripts,
a direct dependency) – a collection
of tools that make many packaging
tasks easier.
bzr-builddeb (and bzr, a
dependency) – distributed version-
control tools that make it easy for
many developers to collaborate
and work on the same code while
keeping it trivial to merge each
other’s work.
apt-file provides an easy way to
find the binary package that
contains a given file.
apt-cache (part of the apt
package) provides even more
information about packages on
Ubuntu.

Create your GPG key

GPG stands for GNU Privacy
Guard and it implements the
OpenPGP standard which allows
you to sign and encrypt messages
and files. This is useful for a

number of purposes. In our case, it
is important that you can sign files
with your key so they can be
identified as something that you
worked on. If you upload a source
package to Launchpad, it will
accept the package only if it can
absolutely determine who
uploaded the package.

To generate a new GPG key, run:

gpg --gen-key

GPG will first ask you which
kind of key you want to generate.
Choosing the default (RSA and
DSA) is fine. Next it will ask you
about the keysize. The default
(currently 2048) is fine, but 4096 is
more secure. Afterwards, it will
ask you if you want it to expire the
key at some stage. It is safe to say
“0”, which means the key will never
expire. The last questions will be
about your name and email
address. Just pick the ones you are

full circle magazine #50 18 contents ^

HOWTO - UBUNTU DEVELOPMENT 2 - SET UP
going to use for Ubuntu
development here, you can add
additional email addresses later
on. Adding a comment is not
necessary. Then you will have to
set a passphrase. Choose a safe
one.

Now GPG will create a key for
you, which can take a little bit of
time; it needs random bytes, so if
you give the system some work to
do it will be just fine. Move the
cursor around!

Once this is done, you will get a
message similar to this one:

pub 4096R/43CDE61D 2010-12-
06
Key fingerprint = 5C28 0144
FB08 91C0 2CF3 37AC 6F0B
F90F 43CD E61D
uid Daniel
Holbach <dh@mailempfang.de>
sub 4096R/51FBE68C 2010-12-
06

In this case 43CDE61D is the
key ID.

Next, you need to upload the
public part of your key to a
keyserver so the world can identify
messages and files as yours. To do
so, enter:

gpg --send-keys <KEY ID>

This will send your key to one
keyserver, but a network of
keyservers will automatically sync
the key between themselves. Once
this syncing is complete, your
signed public key will be ready to
verify your contributions around
the world.

Create your SSH key

SSH stands for Secure Shell,
and it is a protocol that allows you
to exchange data in a secure way
over a network. It is common to
use SSH to access and open a shell
on another computer, and to use it
to securely transfer files. For our
purposes, we will mainly be using
SSH to securely communicate with
Launchpad.

To generate a SSH key, enter:

ssh-keygen -t rsa

The default file name usually
makes sense, so you can just leave
it as it is. For security purposes, it
is highly recommended that you
use a passphrase.

Set up pbuilder

Pbuilder allows
you to build packages
locally on your
machine. It serves a
couple of purposes:

• The build will be done in a
minimal and clean environment.
This helps you make sure your
builds succeed in a reproducible
way, but without modifying your
local system.
• There is no need to install all
necessary build dependencies
locally.
• You can set up multiple instances
for various Ubuntu and Debian
releases.

Setting pbuilder up is very easy.
Edit ~/.pbuilderrc and add the
following line to it:

COMPONENTS="main universe
multiverse restricted"

This will ensure that build
dependencies are satisfied using
all components. Then run:

pbuilder-dist <release>
create

where <release> is, for example,
natty, maverick, lucid, or, in the

case of Debian, maybe sid. This will
take a while as it will download all
the necessary packages for a
“minimal installation”. These will
be cached though.

Get Set Up To Work
With Launchpad

With a basic local configuration
in place, your next step will be to
configure your system to work
with Launchpad. This section will
focus on the following topics:

• What Launchpad is, and creating
a Launchpad account
• Uploading your GPG and SSH keys
to Launchpad
• Configuring Bazaar to work with
Launchpad
• Configuring Bash to work with
Bazaar

About Launchpad

Launchpad is the central piece
of infrastructure we use in Ubuntu.
It not only stores our packages and

full circle magazine #50 19 contents ^

our code, but also things like
translations, bug reports and
information about the people who
work on Ubuntu and their team
memberships. You will also use
Launchpad to publish your
proposed fixes, and get other
Ubuntu developers to review and
sponsor them.

You will need to register with
Launchpad and provide a minimal
amount of information. This will
allow you to download and upload
code, submit bug reports, and
more.

Get a Launchpad
account

If you don’t already have a
Launchpad account, you can easily
create one (at:
https://launchpad.net/+login). If
you have a Launchpad account but
cannot remember your Launchpad
id, you can find this out by going to
https://launchpad.net/people/+me,
and looking for the part after the
~ in the URL.

Launchpad’s registration
process will ask you to choose a
display name. It is encouraged for
you to use your real name here so

that your Ubuntu developer
colleagues will be able to get to
know you better.

When you register a new
account, Launchpad will send you
an email with a link you need to
open in your browser in order to
verify your email address. If you
don’t receive it, check in your spam
folder.

The new account help page
(https://help.launchpad.net/YourAc
count/NewAccount) on Launchpad
has more information about the
process, and additional settings
you can change.

Upload your GPG key to
Launchpad

To find out about your GPG
fingerprint, run:

gpg --fingerprint
<email@address.com>

and it will print out something
like:

pub 4096R/43CDE61D 2010-12-
06
Key fingerprint = 5C28 0144
FB08 91C0 2CF3 37AC 6F0B
F90F 43CD E61D
uid Daniel
Holbach <dh@mailempfang.de>

sub 4096R/51FBE68C 2010-12-
06

Head to
https://launchpad.net/people/+me
/+editpgpkeys and copy the part
about your “Key fingerprint” into
the text box. In the case above this
would be 5C28 0144 FB08 91C0
2CF3 37AC 6F0B F90F 43CD E61D.
Now click on “Import Key”.

Launchpad will use the
fingerprint to check the Ubuntu
key server for your key and, if
successful, send you an encrypted
email asking you to confirm the
key import. Check your email
account, and read the email that
Launchpad sent you. If your email
client supports OpenPGP
encryption, it will prompt you for
the password you chose for the
key when GPG generated it. Enter
the password, then click the link to
confirm that the key is yours.

Launchpad encrypts the email,
using your public key, so that it can
be sure that the key is yours. If
your email software does not
support OpenPGP encryption,
copy the encrypted email’s
contents, type gpg in your
terminal, then paste the email
contents into your terminal

window.

Back on the Launchpad
website, use the Confirm button
and Launchpad will complete the
import of your OpenPGP key.

Find more information at
https://help.launchpad.net/YourAc
count/ImportingYourPGPKey

Upload your SSH key to
Launchpad

Open
https://launchpad.net/people/+me
/+editsshkeys in a web browser,
also open ~/.ssh/id_rsa.pub in a
text editor. This is the public part
of your SSH key, so it is safe to
share it with Launchpad. Copy the
contents of the file and paste
them into the text box on the web
page that says “Add an SSH key”.
Now click “Import Public Key”.

For more information on this
process, visit the creating an SSH
keypair page
(https://help.launchpad.net/YourAc
count/CreatingAnSSHKeyPair) on
Launchpad.

Configure Bazaar

HOWTO - UBUNTU DEVELOPMENT 2 - SET UP

full circle magazine #50 20 contents ^

A PLEA ON BEHALF OF THE
PODCAST PARTY

As you heard in episode #15 of the podcast,
we're calling for opinion topics for that section
of the show.

Instead of us having a rant about whatever
strikes us, why not prompt us with a topic and
watch for the mushroom clouds over the
horizon! It's highly unlikely that the three of us
will agree.

Or, an even more radical thought, send us an
opinion by way of a contribution!

You can post comments and opinions on the
podcast page at fullcirclemagazine.org, in our
Ubuntu Forums section, or email
podcast@fullcirclemagazine.org. You can also
send us a comment by recording an audio clip
of no more than 30 seconds and sending it to
the same address. Comments and audio may
be edited for length. Please remember this is
a family-friendly show.

It would be great to have
contributors come on the show
and express an opinion in
person.

Robin

HOWTO - UBUNTU DEVELOPMENT 2 - SET UP
Bazaar is the tool we use to

store code changes in a logical
way, to exchange proposed
changes and merge them, even if
development is done concurrently.
To tell Bazaar who you are, simply
run:

bzr whoami "Bob Dobbs
<subgenius@example.com>"

bzr launchpad-login subgenius

whoami will tell Bazaar which
name and email address it should
use for your commit messages.
With launchpad-login you set your
Launchpad ID. This way, code that
you publish in Launchpad will be
associated with you.

Note: If you can not remember
the ID, go to
https://launchpad.net/people/+me
and see where it redirects you. The
part after the “~” in the URL is your
Launchpad ID.)

Configure your shell

Similar to Bazaar, the
Debian/Ubuntu packaging tools
need to learn about you as well.
Simply open your ~/.bashrc in a
text editor, and add something like
this to the bottom of it:

export DEBFULLNAME="Bob
Dobbs"

export
DEBEMAIL="subgenius@example.c
om"

Now save the file, and either
restart your terminal or run:

source ~/.bashrc

(If you use a shell different
from the default (which is bash),
please edit the configuration file
for that shell accordingly.)

NEXT MONTH: Fixing a bug

full circle magazine #51 17 contents ^

HHOOWW--TTOO
Written by Daniel Holbach UUbbuunnttuu DDeevveellooppmmeenntt PPtt.. 33 -- BBuugg FFiixxiinngg

Ifyou followed the
instructions to get set up with
Ubuntu Development, you
should be all set and ready to

go.

As you can see in the image
shiwn right, there are no surprises
in the process of fixing bugs in
Ubuntu: you found a problem, you
get the code, work on the fix, test
it, push your changes to
Launchpad, and ask for it to be
reviewed and merged. In this
guide we will go through all the
necessary steps one-by-one.

Finding the problem

There are a lot of different
ways to find things to work on. It
might be a bug report you are
encountering yourself (which gives
you a good opportunity to test the
fix), or a problem you noted
elsewhere, maybe in a bug report.

Harvest is where we keep track
of various TODO lists regarding
Ubuntu development. It lists bugs
that were fixed upstream or in

Debian already,
lists small bugs
(we call them
‘bitesize’), and so
on. Check it out
and find your first
bug to work on.

Figuring out
what to fix

If you don’t
know the source
package
containing the code that has the
problem, but you do know the
path to the affected program on
your system, you can discover the
source package that you’ll need to
work on.

Let’s say you’ve found a bug in
Tomboy, a note taking desktop
application. The Tomboy
application can be started by
running /usr/bin/tomboy on the
command line. To find the binary
package containing this
application, use this command:

apt-file find /usr/bin/tomboy

This would print out:

tomboy: /usr/bin/tomboy

Note that the part preceding
the colon is the binary package
name. It’s often the case that the
source package and binary
package will have different names.
This is most common when a single
source package is used to build
multiple different binary packages.
To find the source package for a
particular binary package, type:

apt-cache show tomboy | grep
^Source:

In this case, nothing is printed,
meaning that tomboy is also the
name of the binary package. An
example where the source and
binary package names differ is
python-vigra. While that is the
binary package name, the source
package is actually libvigraimpex
and can be found with this
command (and its output):

apt-cache show python-vigra
| grep ^Source:

Source: libvigraimpex

full circle magazine #51 18 contents ^

HOWTO - UBUNTU DEVELOPMENT 3 - BUG FIXING

Getting the code

Once you know the source
package to work on, you will want
to get a copy of the code on your
system, so that you can debug it.
This is done by *branching* the
source package branch
corresponding to the source
package. Launchpad maintains
source package branches for all
the packages in Ubuntu. Once
you’ve got a local branch of the
source package, you can
investigate the bug, create a fix,
and upload your proposed fix to
Launchpad, in the form of a Bazaar
branch. When you are happy with
your fix, you can submit a *merge
proposal*, which asks other
Ubuntu developers to review and
approve your change. If they agree
with your changes, an Ubuntu
developer will upload the new
version of the package to Ubuntu
so that everyone gets the benefit
of your excellent fix - and you get
a little bit of credit. You’re now on
your way to becoming an Ubuntu
developer! We’ll describe specifics
on how to branch the code, push
your fix, and request a review in
the following sections.

Work on a fix

There are entire books written
about finding bugs, fixing them,
testing them, etc. If you are
completely new to programming,
try to fix easy bugs such as obvious
typos first. Try to keep changes as
minimal as possible and document
your change and assumptions
clearly.

Before working on a fix
yourself, make sure to investigate
if nobody else has fixed it already
or is currently working on a fix.
Good sources to check are:

• Upstream (and Debian) bug
tracker (open and closed bugs),

• Upstream revision history (or
newer release) might have fixed
the problem,

• bugs or package uploads of
Debian or other distributions.

If you find a patch to fix the
problem, say, attached to a bug
report, running this command in
the source directory should apply
the patch:

patch -p1 < ../bugfix.patch

Refer to the patch(1) manpage

for options and arguments such as -
-dry-run, -p<num>, etc.

Testing the fix

To build a test package with
your changes, run these
commands:

bzr bd -- -S -us -uc

pbuilder-dist <release>
build
../<package>_<version>.dsc

This will create a source
package from the branch contents
(-us -uc will just omit the step to
sign the source package) and
pbuilder-dist will build the package
from source for whatever release
you choose.

Once the build succeeds, install
the package from
~/pbuilder/<release>_result/
(using sudo dpkg -i
<package>_<version>.deb). Then
test to see if the bug is fixed.

Documenting the fix

It is very important to
document your change sufficiently
so developers who look at the
code in the future won’t have to

guess what your reasoning was
and what your assumptions were.
Every Debian and Ubuntu package
source includes debian/changelog,
where changes of each uploaded
package are tracked.

The easiest way to update this
is to run:

dch -i

This will add a boilerplate
changelog entry for you and
launch an editor where you can fill
in the blanks. An example of this
could be:

specialpackage (1.2-
3ubuntu4) natty; urgency=low
* debian/control: updated

description to include
frobnicator (LP: #123456)
-- Emma Adams
<emma.adams@isp.com> Sat,
17 Jul 2010 02:53:39 +0200

dch should fill out the first and
last line of such a changelog entry
for you already. Line 1 consists of
the source package name, the
version number, which Ubuntu
release it is uploaded to, the
urgency (which almost always is
‘low’). The last line always contains
the name, email address and
timestamp (in RFC 5322 format) of
the change.

full circle magazine #51 19 contents ^

With that out of the way, let’s
focus on the actual changelog
entry itself: it is very important to
document:
• where the change was done
• what was changed
• where the discussion of the
change happened

In our (very sparse) example,
the last point is covered by (LP:
#123456) which refers to
Launchpad bug 123456. Bug
reports or mailing list threads or
specifications are usually good
information to provide as a
rationale for a change. As a bonus,
if you use the LP: #<number>
notation for Launchpad bugs, the
bug will be automatically closed
when the package is uploaded to
Ubuntu.

Committing the fix

With the changelog entry
written and saved, you can just run:

debcommit

and the change will be
committed (locally) with your
changelog entry as a commit
message.

To push it to Launchpad, as the
remote branch name, you need to
stick to the following
nomenclature:

lp:~<yourlpid>/ubuntu/<releas
e>/<package>/<branchname>

This could, for example, be

lp:~emmaadams/ubuntu/natty/sp
ecialpackage/fix-for-123456

So, if you just run

bzr push
lp:~emmaadams/ubuntu/natty/sp
ecialpackage/fix-for-123456

bzr lp-open

you should be all set. The push
command should push it to
Launchpad, and the second
command will open the Launchpad
page of the remote branch in your
browser. There, find the “(+)
Propose for merging” link, and
click it to get the change reviewed
by somebody and included in
Ubuntu.

Next month: an overview of the
Debian directory structure.

HOWTO - UBUNTU DEVELOPMENT 3 - BUG FIXING

Z e r o D ow n t i m e

Below Zero is a Co-located Server Hosting specialist in the UK.

Uniquely we only provide rack space
and bandwidth. This makes our service
more reliable, more flexible, more
focused and more competitively
priced. We concentrate solely on the
hosting of Co-located Servers and their
associated systems, within Scotland's
Data Centres.

At the heart of our networking
infrastructure is state-of-the-art BGP4
routing that offers optimal data
delivery and automatic multihomed
failover between our outstanding
providers. Customers may rest assured
that we only use the highest quality of
bandwidth; our policy is to pay more for the best of breed providers
and because we buy in bulk this doesn't impact our extremely
competitive pricing.

At Below Zero we help you to achieve Zero Downtime.

www.zerodowntime.co.uk

full circle magazine #52 19 contents ^

HHOOWW--TTOO
Written by Daniel Holbach UUbbuunnttuu DDeevveellooppmmeenntt PPtt.. 44 -- ddeebbiiaann//

This article will briefly
explain the different files
important to the
packaging of Ubuntu

packages which are contained in
the debian/ directory. The most
important of them are changelog,
control, copyright, and rules. These
are required for all packages. A
number of additional files in
debian/ may be used in order to
customize and configure the
behavior of the package. Some of
these files are discussed in this
article, but this is not meant to be
a complete list.

The Changelog

This file is, as its name implies,
a listing of the changes made in
each version. It has a specific
format that gives the package
name, version, distribution,
changes, and who made the
changes at a given time. If you
have a GPG key (see: Getting set
up) make sure to use the same
name and email address in
changelog as you have in your key.
The following is a template

changelog:

package (version)
distribution; urgency=urgency

* change details
- more change details
* even more change details

-- maintainer name <email
address>[two spaces] date

The format (especially of the
date) is important. The date
should be in RFC 5322 format,
which can be obtained by using the
command date -R. For
convenience, the command dch
may be used to edit changelog. It
will update the date automatically.
Minor bullet points are indicated
by a dash “-“, while major points
use an asterisk “*”. If you are
packaging from scratch, dch --
create (dch is in the devscripts
package) will create a standard
debian/changelog for you.

Here is a sample changelog file
for hello:

hello (2.6-0ubuntu1) natty;
urgency=low

* New upstream release
with lots of bug fixes and
feature improvements.

-- Jane Doe
<packager@example.com> Thu,
21 Apr 2011 11:12:00 -0400

Notice that the version has a -
0ubuntu1 appended to it, this is
the distro revision, used so that
the packaging can be updated (to
fix bugs for example) with new
uploads within the same source
release version.

Ubuntu and Debian have
slightly different package
versioning schemes to avoid
conflicting packages with the same
source version. If a Debian package
has been changed in Ubuntu, it has
ubuntuX (where X is the Ubuntu
revision number) appended to the
end of the Debian version. So, if
the Debian hello 2.6-1 package
was changed by Ubuntu, the
version string would be 2.6-
1ubuntu1. If a package for the
application does not exist in
Debian, then the Debian revision is
0 (e.g. 2.6-0ubuntu1).

For further information, see the
changelog section (Section 4.4) of
the Debian Policy Manual.

The Control File

The control file contains the
information that the package
manager (such as apt-get, synaptic,
and adept) uses, build-time
dependencies, maintainer
information, and much more.

For the Ubuntu hello package,
the control file looks something
like:

Source: hello
Section: devel
Priority: optional
Maintainer: Ubuntu
Developers <ubuntu-devel-
discuss@lists.ubuntu.com>
XSBC-Original-Maintainer:
Jane Doe
<packager@example.com>
Standards-Version: 3.9.1
Build-Depends: debhelper (>=
7)
Bzr-Vcs: lp:ubuntu/hello
Homepage:
http://www.gnu.org/software/h
ello/

Package: hello

full circle magazine #52 20 contents ^

HOWTO - UBUNTU DEVELOPMENT 4 - debian/
Architecture: any
Depends: ${shlibs:Depends}
Description: The classic
greeting, and a good example
The GNU hello program
produces a familiar,
friendly greeting. It allows
non-programmers to use a
classic computer science
tool which would otherwise
be unavailable to them.
Seriously, though: this is
an example of how to do a
Debian package. It is the
Debian version of the GNU
Project's `hello world'
program (which is itself an
example for the GNU Project).

The first paragraph describes
the source package - including the
list of packages required to build
the package from source in the
Build-Depends field. It also
contains some meta-information
such as the maintainer’s name, the
version of Debian Policy that the
package complies with, the
location of the packaging version
control repository, and the
upstream home page.

Note that, in Ubuntu, we set
the Maintainer field to a general
address because anyone can
change any package (this differs
from Debian where changing
packages is usually restricted to an
individual or a team). Packages in

Ubuntu should generally have the
Maintainer field set to Ubuntu
Developers <ubuntu-devel-
discuss@lists.ubuntu.com>. If the
Maintainer field is modified, the
old value should be saved in the
XSBC-Original-Maintainer field.
This can be done automatically
with the update-maintainer script
available in the ubuntu-dev-tools
package. For further information,
see the Debian Maintainer Field
spec on the Ubuntu wiki.

Each additional paragraph
describes a binary package to be
built.

For further information, see the
control file section (Chapter 5) of
the Debian Policy Manual.

The Copyright File

This file gives the copyright
information for both the upstream
source and the packaging. Ubuntu
and Debian Policy (Section 12.5)
require that each package installs
a verbatim copy of its copyright
and license information to
/usr/share/doc/$(package_name)/c
opyright.

Generally, copyright

information is found in the
COPYING file in the program’s
source directory. This file should
include such information as the
names of the author and the
packager, the URL from which the
source came, a Copyright line with
the year and copyright holder, and
the text of the copyright itself. An
example template would be:

Format:
http://svn.debian.org/wsvn/de
p/web/deps/dep5.mdwn?op=file&
rev=166
Upstream-Name: Hello
Source:
ftp://ftp.example.com/pub/gam
es

Files: *
Copyright: Copyright 1998
John Doe <jdoe@example.com>
License: GPL-2+
This program is free
software; you can
redistribute it and/or
modify it under the terms of
the GNU General Public
License as published by the
Free Software Foundation;
either version 2 of the
License, or (at your option)
any later version.
.
This program is distributed
in the hope that it will be
useful, but WITHOUT ANY
WARRANTY; without even the
implied warranty of
MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE.

See the GNU General Public
License for more details.
.
You should have received a
copy of the GNU General
Public License along with
this package; if not, write
to the Free Software
Foundation, Inc., 51
Franklin St, Fifth Floor,
Boston, MA 02110-1301 USA
.
On Debian systems, the full
text of the GNU General
Public License version 2 can
be found in the file
`/usr/share/common-
licenses/GPL-2'.

Files: debian/*
Copyright: Copyright 1998
Jane Doe
<packager@example.com>
License: GPL-2+

This example follows the DEP-
5: Machine-parseable
debian/copyright proposal. You
are encouraged to use this format
as well.

The Rules File

The last file we need to look at
is rules. This does all the work for
creating our package. It is a
Makefile with targets to compile
and install the application, then
create the .deb file from the
installed files. It also has a target

full circle magazine #52 21 contents ^

to clean up all the build files so
you end up with just a source
package again.

Here is a simplified version of
the rules file created by dh_make
(which can be found in the dh-
make package):

#!/usr/bin/make -f
-*- makefile -*-

Uncomment this to turn on
verbose mode.
#export DH_VERBOSE=1

%:
dh $@

Let us go through this file in
some detail. What this does is pass
every build target that
debian/rules is called with as an
argument to /usr/bin/dh, which
itself will call all the necessary
dh_* commands.

dh runs a sequence of
debhelper commands. The
supported sequences correspond
to the targets of a debian/rules
file: “build”, “clean”, “install”,
“binary-arch”, “binary-indep”, and
“binary”. In order to see what
commands are run in each target,
run:

dh binary-arch --no-act

Commands in the binary-indep
sequence are passed the “-i”
option to ensure they work only on
binary independent packages, and
commands in the binary-arch
sequences are passed the “-a”
option to ensure they work only on
architecture dependent packages.

Each debhelper command will
record when it’s successfully run in
debian/package.debhelper.log.
(Which dh_clean deletes.) So dh
can tell which commands have
already been run, for which
packages, and skip running those
commands again. Each time dh is
run, it examines the log, and finds
the last logged command that is in
the specified sequence. It then
continues with the next command

in the sequence. The --until, --
before, --after, and --remaining
options can override this behavior.

If debian/rules contains a
target with a name like
override_dh_command, then when
it gets to that command in the
sequence, dh will run that target
from the rules file, rather than
running the actual command. The
override target can then run the
command with additional options,
or run entirely different
commands instead. (Note that to
use this feature, you should Build-
Depend on debhelper 7.0.50 or
above.)

Have a look at
/usr/share/doc/debhelper/example
s/ and man dh for more examples.

Also see the rules section (Section
4.9) of the Debian Policy Manual.

Additional Files

The Install File

The install file is used by
dh_install to install files into the
binary package. It has two
standard use cases:

• To install files into your
package that are not handled by
the upstream build system.

• Splitting a single large source
package into multiple binary
packages.

In the first case, the install file
should have one line per file
installed, specifying both the file
and the installation directory. For
example, the following install file
would install the script foo in the
source package’s root directory to
usr/bin, and a desktop file in the
debian directory to
usr/share/applications:

foo usr/bin
debian/bar.desktop
usr/share/applications

When a source package is
producing multiple binary

HOWTO - UBUNTU DEVELOPMENT 4 - debian/

full circle magazine #52 22 contents ^

packages, dh will install the files
into debian/tmp rather than
directly into debian/<package>.
Files installed into debian/tmp can
then be moved into separate
binary packages using multiple
$package_name.install files. This is
often done to split large amounts
of architecture independent data
out of architecture dependent
packages and into Architecture: all
packages. In this case, only the
name of the files (or directories) to
be installed are needed without
the installation directory. For
example, foo.install containing
only the architecture dependent
files might look like:

usr/bin/
usr/lib/foo/*.so

While foo-common.install
containing only the architecture
independent file might look like:

/usr/share/doc/
/usr/share/icons/
/usr/share/foo/
/usr/share/locale/

This would create two binary
packages, foo and foo-common.
Both would require their own
paragraph in debian/control.

See man dh_install and the

install file section (Section 5.11) of
the Debian New Maintainers’
Guide for additional details.

The Watch File

The debian/watch file allows us
to check automatically for new
upstream versions using the tool
uscan found in the devscripts
package. The first line of the
watch file must be the format
version (3, at the time of this
writing), while the following lines
contain any URLs to parse. For
example:

version=3
http://ftp.gnu.org/gnu/hello/
hello-(.*).tar.gz

Running uscan in the root
source directory will now compare
the upstream version number in
debian/changelog with the latest
available upstream version. If a
new upstream version is found, it
will be automatically downloaded.
For example:

$ uscan
hello: Newer version (2.7)
available on remote site:

http://ftp.gnu.org/gnu/hell
o/hello-2.7.tar.gz

(local version is 2.6)
hello: Successfully

downloaded updated package
hello-2.7.tar.gz

and symlinked
hello_2.7.orig.tar.gz to it

For further information, see
man uscan and the watch file
section (Section 4.11) of the
Debian Policy Manual.

For a list of packages where the
watch file reports they are not in
sync with upstream, see Ubuntu
External Health Status.

The Source/Format File

This file indicates the format of
the source package. Currently, the
package source format defaults to
1.0 if this file does not exist. You
are encouraged to use the newer
3.0 source format. In this case, the
file should contain a single line
indicating the desired format:

• 3.0 (native) for Debian native
packages (no upstream version) or

• 3.0 (quilt) for packages with a
separate upstream tarball

If, for some reason, you wish to
keep using the old format, please
create this file and put 1.0 in it to
be explicit about the source
package version. This allows for
the future removal of the 1.0

default for the package source
format.

http://wiki.debian.org/Projects/
DebSrc3.0 summarizes information
concerning, and the benefits of
the switch to, the 3.0 source
package formats.

See man dpkg-source and the
source/format section (Section
5.21) of the Debian New
Maintainers’ Guide for additional
details.

Additional Resources

In addition to the links to the
Debian Policy Manual in each
section above, the Debian New
Maintainers’ Guide has more
detailed descriptions of each file.
Chapter 4, “Required files under
the debian directory” further
discusses the control, changelog,
copyright, and rules files. Chapter
5, “Other files under the debian
directory” discusses additional
files that may be used.

HOWTO - UBUNTU DEVELOPMENT 4 - debian/

