
PROGRAMMING SERIES SPECIAL EDITION

 PROGRAMPROGRAM
 IN PYTHONIN PYTHON
 Volume Volume OneOne

Full Circle Magazine is neither affiliated, with nor endorsed by, Canonical Ltd.

Full Circle Magazine Specials

Full Circle Magazine

The articles contained in this magazine are released under the Creative Commons Attribution-Share Alike 3.0
Unported license. This means you can adapt, copy, distribute and transmit the articles but only under the following conditions:

You must attribute the work to the original author in some way (at least a name, email or URL) and to this magazine by name ('full circle magazine') and
the URL www.fullcirclemagazine.org (but not attribute the article(s) in any way that suggests that they endorse you or your use of the work). If you alter,
transform, or build upon this work, you must distribute the resulting work under the same, similar or a compatible license.
Full Circle Magazine is entirely independent of Canonical, the sponsor of Ubuntu projects and the views and opinions in the magazine should in no
way be assumed to have Canonical endorsement.

Please note: this Special
Edition is provided with
absolutely no warranty
whatsoever; neither the
contributors nor Full Circle
Magazine accept any
responsibility or liability for
loss or damage resulting from
readers choosing to apply this
content to theirs or others
computers and equipment.

About Full Circle

Full Circle is a free,
independent, magazine
dedicated to the Ubuntu
family of Linux operating
systems. Each month, it
contains helpful how-to
articles and reader-
submitted stories.

Full Circle also features a
companion podcast, the Full
Circle Podcast which covers
the magazine, along with
other news of interest.

Welcome to another 'single-topic special'
In response to reader requests, we are assembling the
content of some of our serialised articles into dedicated
editions.

For now, this is a straight reprint of the series
'Programming in Python', Parts 1-8 from issues #27
through #34; nothing fancy, just the facts.

Please bear in mind the original publication date; current
versions of hardware and software may differ from those
illustrated, so check your hardware and software versions
before attempting to emulate the tutorials in these special
editions. You may have later versions of software installed
or available in your distributions' repositories.

Enjoy!

Find Us

Website:
http://www.fullcirclemagazine.org/

Forums:
http://ubuntuforums.org/
forumdisplay.php?f=270

IRC: #fullcirclemagazine on
chat.freenode.net

Editorial Team

Editor: Ronnie Tucker
(aka: RonnieTucker)
ronnie@fullcirclemagazine.org

Webmaster: Rob Kerfia
(aka: admin / linuxgeekery-
admin@fullcirclemagazine.org

Podcaster: Robin Catling
(aka RobinCatling)
podcast@fullcirclemagazine.org

Communications Manager:
Robert Clipsham
(aka: mrmonday) -
mrmonday@fullcirclemagazine.org

http://www.fullcirclemagazine.org/
http://ubuntuforums.org/forumdisplay.php?f=270
http://ubuntuforums.org/forumdisplay.php?f=270
mailto:ronnie@fullcirclemagazine.org
mailto:admin@fullcirclemagazine.org
mailto:podcast@fullcirclemagazine.org
mailto:mrmonday@fullcirclemagazine.org

full circle magazine #27 7 contents ^

HOW-TO Program In Python - Part 1

N/A

GraphicsDev Internet M/media System

HDDCD/DVD USB Drive Laptop Wireless

A
mong the many
programming
languages currently
available, Python is

one of the easiest to learn.
Python was created in the late
1980's, and has matured
greatly since then. It comes pre-
installed with most Linux
distributions, and is often one
of the most overlooked when
picking a language to learn.
We'll deal with command-line
programming in this article. In
a future one, we'll play with GUI

(Graphical User Interface)
programming. Let's jump right
in, creating a simple
application.

Our First Program
Using a text editor such as

gedit, let's type some code.
Then we'll see what each line
does and go from there.

Type the following 4 lines.

#!/usr/bin/env python

print 'Hello. I am a python
program.'

name = raw_input("What is
your name? ")

print "Hello there, " + name
+ "!"

That's all there is to it. Save
the file as hello.py wherever
you would like. I'd suggest
putting it in your home
directory in a folder named
python_examples. This simple
example shows how easy it is
to code in Python. Before we
can run the program, we need

to set it to be executable. Do
this by typing

chmod +x hello.py

in the folder where you saved
your python file. Now let's run
the program.

greg@earth:~/python_examples$
./hello.py

Hello. I am a python
program.

What is your name? Ferd
Burphel

Hello there, Ferd Burphel!

greg@earth:~/python_examples$

That was simple. Now, let's
look at what each line of the
program does.

#!/usr/bin/env python

This line tells the system
that this is a python program,
and to use the default python
interpreter to run the program.

print 'Hello. I am a python
program.'

Simply put, this prints the
first line "Hello. I am a python
program." on the terminal.

name = raw_input("What is
your name? ")

This one is a bit more
complex. There are two parts
to this line. The first is name =,
and the second is
raw_input("What is your name?
"). We'll look at the second part
first. The command raw_input
will print out the prompt in the
terminal ("What is your name?
"), and then will wait for the
user (you) to type something
(followed by {Enter}). Now
let's look at the first part: name
=. This part of the command
assigns a variable named
"name". What's a variable?
Think of a variable as a shoe-
box. You can use a shoe-box to
store things -- shoes, computer
parts, papers, whatever. To the
shoe-box, it doesn't really
matter what's in there -- it's
just stored there. In this case, it
stores whatever you type. In
the case of my entry, I typed
Ferd Burphel. Python, in this

full circle magazine #27 8 contents ^

PROGRAM IN PYTHON - PART 1
instance, simply takes the
input and stores it in the
"name" shoe-box for use later
in the program.

print "Hello there, " + name
+ "!"

Once again, we are using
the print command to display
something on the screen -- in
this case, "Hello there, ", plus
whatever is in the variable
"name", and an exclamation
point at the end. Here we are
concatenating or putting
together three pieces of
information: "Hello there",
information in the variable
"name", and the exclamation
point.

Now, let's take a moment to
discuss things a bit more
deeply before we work on our
next example. Open a terminal
window and type:

python

You should get something
like this:

greg@earth:~/python_examples$
python

Python 2.5.2 (r252:60911,

Oct 5 2008, 19:24:49)

[GCC 4.3.2] on linux2

Type "help", "copyright",
"credits" or "license" for
more information.

>>>

You are now in the python
shell. From here, you can do a
number of things, but let's see
what we got before we go on.
The first thing you should
notice is the python version --
mine is 2.5.2. Next, you should
notice a statement indicating
that, for help, you should type
"help" at the prompt. I'll let you
do that on your own. Now type:

print 2+2

and press enter. You'll get back

>>> print 2+2
4
>>>

Notice that we typed the
word "print" in lower case.
What would happen if we typed
"Print 2+2"? The response from
the interpreter is this:

>>> Print 2+2
File "<stdin>", line 1

Print 2+2

^
SyntaxError: invalid syntax
>>>

That's because the word
"print" is a known command,
while "Print" is not. Case is
very important in Python.

Now let's play with variables
a bit more. Type:

var = 2+2

You'll see that nothing much
happens except Python returns
the ">>>" prompt. Nothing is
wrong. What we told Python to
do is create a variable (shoe-
box) called var, and to stick
into it the sum of "2+2". To see
what var now holds, type:

print var

and press enter.

>>> print var
4
>>>

Now we can use var over
and over again as the number
4, like this:

>>> print var * 2
8
>>>

If we type "print var" again
we'll get this:

>>> print var
4
>>>

var hasn't changed. It's still
the sum of 2+2, or 4.

This is, of course, simple
programming for this
beginner's tutorial. Complexity
will increase in subsequent
tutorials. But now let's look at
some more examples of
variables.

In the interpreter type:

>>> strng = 'The time has
come for all good men to
come to the aid of the
party!'

>>> print strng

The time has come for all
good men to come to the aid
of the party!

>>>

You've created a variable
named "strng" (short for string)
containing the value 'The time
has come for all good men to
come to the aid of the party!'.
From now on (as long as we are

full circle magazine #27 9 contents ^

PROGRAM IN PYTHON - PART 1
in this instance of the
interpreter), our strng variable
will be the same unless we
change it. What happens if we
try to multiply this variable by
4?

>>> print strng * 4

The time has come for all
good men to come to the aid
of the party!The time has
come for all good men to
come to the aid of the
party!The time has come for
all good men to come to the
aid of the party!The time
has come for all good men to
come to the aid of the party!

>>>

Well, that is not exactly
what you would expect, is it? It
printed the value of strng 4
times. Why? Well, the
interpreter knew that strng was
a string of characters, not a
value. You can't perform math
on a string.

What if we had a variable
called s that contained '4', as
in the following:

>>> s = '4'
>>> print s
4

It looks as though s contains
the integer 4, but it doesn't.
Instead it contains a string
representation of 4. So, if we
type 'print s * 4' we get...

>>> print s*4
4444
>>>

Once again, the interpreter
knows that s is a string, not a
numerical value. It knows this
because we enclosed the
number 4 with single quotes,
making it a string.

We can prove this by typing
print type(s) to see what the
system thinks that variable
type is.

>>> print type(s)
<type 'str'>
>>>

Confirmation. It's a string
type. If we want to use this as
a numerical value, we could do
the following:

>>> print int(s) * 4
16
>>>

The string (s), which is '4',
has now been converted to an

integer and then multiplied by
4 to give 16.

You have now been
introduced to the print
command, the raw_input
command, assigning variables,
and the difference between
strings and integers.

Let's go a bit further. In the
Python Interpreter, type quit()
to exit back to the command
prompt.

Simple For Loop
Now, let's explore a simple

programming loop. Go back to
the text editor and type the
following program.

#! /usr/bin/env python

for cntr in range(0,10):

print cntr

Be sure to tab the "print
cntr" line. This is important.
Python doesn't use
parentheses "(" or curly braces
"{" as do other programming
languages to show code
blocks. It uses indentations
instead.

Save the program as
"for_loop.py". Before we try to
run this, let's talk about what a
for loop is.

A loop is some code that
does a specified instruction, or
set of instructions, a number of
times. In the case of our
program, we loop 10 times,
printing the value of the
variable cntr (short for
counter). So the command in
plain English is "assign the
variable cntr 0, loop 10 times
printing the variable cntr
contents, add one to cntr and
do it all over again. Seems
simple enough. The part of the
code "range(0,10)" says start
with 0, loop until the value of
cntr is 10, and quit.

Now, as before, do a

chmod +x for_loop.py

and run the program with

./for_loop.py

in a terminal.

greg@earth:~/python_examples$
./for_loop.py
0
1

full circle magazine #27 10 contents ^

PROGRAM IN PYTHON - PART 1
2
3
4
5
6
7
8
9
greg@earth:~/python_examples$

Well, that seems to have
worked, but why does it count
up to only 9 and then stop.
Look at the output again. There
are 10 numbers printed,
starting with 0 and ending with
9. That's what we asked it to
do -- print the value of cntr 10
times, adding one to the
variable each time, and quit as
soon as the value is 10.

Now you can see that, while
programming can be simple, it
can also be complex, and you
have to be sure of what you
ask the system to do. If you
changed the range statement
to be "range(1,10)", it would
start counting at 1, but end at
9, since as soon as cntr is 10,
the loop quits. So to get it to
print "1,2,3,4,5,6,7,8,9,10", we
should use range(1,11) - since
the for loop quits as soon as
the upper range number is
reached.

Also notice the syntax of the
statement. It is "for variable in
range(start value,end value):"
The ":" says, we are starting a
block of code below that
should be indented. It is very
important that you remember
the colon ":", and to indent the
code until the block is finished.

If we modified our program
to be like this:

#! /usr/bin/env python

for cntr in range(1,11):

print cntr

print 'All Done'

We would get an output of...

greg@earth:~/python_examples$
./for_loop.py
1
2
3
4
5
6
7
8
9
10
All Done
greg@earth:~/python_examples$

Make sure your indentation
is correct. Remember,

indentation shows the block
formatting. We will get into
more block indentation
thoughts in our next tutorial.

That's about all for this
time. Next time we'll recap and
move forward with more
python programming
instructions. In the meantime,
you might want to consider
installing a python specific
editor like Dr. Python, or SPE
(Stani's Python Editor), both of
which are available through
Synaptic.

is owner of
, a

consulting company in Aurora,
Colorado, and has been
programming since 1972. He
enjoys cooking, hiking, music,
and spending time with his
family.

full circle magazine #28 7 contents ^

HOW-TO Program In Python - Part 2

FCM#27 - Python Part 1

GraphicsDev Internet M/media System

HDDCD/DVD USB Drive Laptop Wireless

I
n the last installment, we
looked at a simple
program using raw_input
to get a response from the

user, some simple variable
types, and a simple loop using
the "for" statement. In this
installment, we will delve more
into variables, and write a few
more programs.

Let's look at another type of
variable called lists. In other
languages, a list would be
considered an array. Going
back to the analogy of shoe-
boxes, an array (or list) would
be a number of boxes all glued
side-by-side holding like items.
For example, we could store
forks in one box, knives in
another, and spoons in
another. Let's look at a simple
list. An easy one to picture
would be a list of month
names. We would code it like
this...

months =
['Jan','Feb','Mar','Apr','May
','Jun','Jul','Aug','Sep','Oc

t','Nov','Dec']

To create the list, we bracket
all the values with square
brackets ('[' and ']'). We have
named our list 'months'. To use
it, we would say something like
print months[0] or months[1]
(which would print 'Jan' or
'Feb'). Remember that we
always count from zero. To find
the length of the list, we can
use:

print len(months)

which returns 12.

Another example of a list
would be categories in a
cookbook. For example...

categories = ['Main
dish','Meat','Fish','Soup','C
ookies']

Then categories[0] would be
'Main dish', and categories[4]
would be 'Cookies'. Pretty
simple again. I'm sure you can
think of many things that you
can use a list for.

Up to now, we have created
a list using strings as the
information. You can also
create a list using integers.
Looking back at our months
list, we could create a list
containing the number of days
in each one:

DaysInMonth =
[31,28,31,30,31,30,31,31,30,3
1,30,31]

If we were to print
DaysInMonth[1] (for February)
we would get back 28, which is
an integer. Notice that I made
the list name DaysInMonth.
Just as easily, I could have
used 'daysinmonth' or just 'X'...
but that is not quite so easy to
read. Good programming
practices suggest (and this is
subject to interpretation) that
the variable names are easy to
understand. We'll get into the
whys of this later on. We'll play
with lists some more in a little
while.

Before we get to our next
sample program, let's look at a
few other things about Python.

I received an email from David
Turner who suggested that using
the Tab-key for indentation of code
is somewhat misleading as some
editors may use more, or less, than
four spaces per indent. This is
correct. Many Python programmers
(myself included) save time by
setting the tab key in their editor to
four spaces. The problem is,
however, that someone else's
editor may not have the same
setting as yours, which could lead
to ugly code and other problems.
So, get into the habit of using
spaces rather than the Tab-key.

full circle magazine #28 8 contents ^

PROGRAM IN PYTHON - PART 2

We briefly discussed strings
in Part 1. Let's look at string a
bit closer. A string is a series of
characters. Not much more
than that. In fact, you can look
at a string as an array of
characters. For example if we
assign the string 'The time has
come' to a variable named
strng, and then wanted to
know what the second
character would be, we could
type:

strng = 'The time has come'
print strng[1]

The result would be 'h'.
Remember we always count
from 0, so the first character
would be [0], the second would
be [1], the third would be [2],
and so on. If we want to find
the characters starting at
position 4 and going through
position 8, we could say:

print strng[4:8]

which returns 'time'. Like our
for loop in part 1, the counting
stops at 8, but does not return
the 8th character, which would

be the space after 'time'.

We can find out how long
our string is by using the len()
function:

print len(strng)

which returns 17. If we want to
find out where in our string the
word 'time' is, we could use

pos = strng.find('time')

Now, the variable pos (short
for position) contains 4, saying
that 'time' starts at position 4
in our string. If we asked the
find function to find a word or
sequence that doesn't exist in
the string like this:

pos = strng.find('apples')

the returned value in pos would
be -1.

We can also get each
separate word in the string by
using the split command. We
will split (or break) the string at
each space character by using:

print strng.split(' ')

which returns a list containing

['The', 'time', 'has', 'come'].
This is very powerful stuff.
There are many other built-in
string functions, which we'll be
using later on.

There is one other thing that
I will introduce before we get to
our next programming
example. When we want to
print something that includes
literal text as well as variable
text, we can use what's called
Variable Substitution. To do this
is rather simple. If we want to
substitute a string, we use '%s'
and then tell Python what to
substitute. For example, to
print a month from our list
above, we can use:

print 'Month = %s' %
month[0]

This would print 'Month =
Jan'. If we want to substitute an
integer, we use '%d'. Look at
the example below:

Months =
['Jan','Feb','Mar','Apr','May
','Jun','Jul','Aug','Sep','Oc
t','Nov','Dec']
DaysInMonth =
[31,28,31,30,31,30,31,31,30,3

1,30,31]
for cntr in range(0,12):

print '%s has %d
days.' %
(Months[cntr],DaysInMonth[cnt
r])

The result from this code is:

Jan has 31 days.
Feb has 28 days.
Mar has 31 days.
Apr has 30 days.
May has 31 days.
Jun has 30 days.
Jul has 31 days.
Aug has 31 days.
Sep has 30 days.
Oct has 31 days.
Nov has 30 days.
Dec has 31 days.

Something important to
understand here is the use of
single quotes and double
quotes. If you assign a variable
to a string like this:

st = 'The time has come'

or like this:

st = “The time has come”

the result is the same.
However, if you need to include
a single quote in the string like
this:

full circle magazine #28 9 contents ^

PROGRAM IN PYTHON - PART 2
st = 'He said he's on his
way'

you will get a syntax error. You
need to assign it like this:

st = “He said he's on his
way”

Think of it this way. To define
a string, you must enclose it in
some kind of quotes ‒ one at
the beginning, and one at the
end ‒ and they must match. If
you need to mix quotes, use
the outer quotes to be the ones
that aren't in the string as
above. You might ask, what if I
need to define a string like
“She said “Don't Worry””? In
this case, you could define it
this way:

st = 'She said “Don\'t
Worry”'

Notice the backslash before
the single quote in 'Don't'. This
is called an escape character,
and tells Python to print the (in
this case) single-quote ‒
without considering it as a
string delimiter. Other escape
character sequences (to show
just a few) would be '\n' for
new line, and '\t' for tab. We'll
deal with these in later sample

code.

We need to learn a few more
things to be able to do our next
example. First is the difference
between assignment and
equate. We've used the
assignment many times in our
samples. When we want to
assign a value to a variable, we
use the assignment operator or
the '=' (equal sign):

variable = value

However, when we want to
evaluate a variable to a value,
we must use a comparison
operator. Let's say we want to
check to see if a variable is
equal to a specific value. We
would use the '==' (two equal
signs):

variable == value

So, if we have a variable
named loop and we want to
see if it is equal to, say, 12, we
would use:

if loop == 12:

Don't worry about the if and
the colon shown in the
example above yet. Just
remember we have to use the
double-equal sign to do
evaluation.

The next thing we need to
discuss is comments.
Comments are important for
many things. Not only do they
give you or someone else an
idea of what you are trying to
do, but when you come back to
your code, say 6 months from
now, you can be reminded of
what you were trying to do.
When you start writing many
programs, this will become
important. Comments also
allow you to make Python
ignore certain lines of code. To
comment a line you use the '#'
sign. For example:

This is a comment

You can put comments
anywhere on a code line, but
remember when you do,
Python will ignore anything
after the '#'.

Now we will return to the "if"
statement we showed briefly
above. When we want to make
a decision based on values of
things, we can use the if
statement:

if loop == 12:

This will check the variable
'loop', and, if the value is 12,
then we do whatever is in the
indented block below. Many
times this will be sufficient,
but, what if we want to say If a
variable is something, then do
this, otherwise do that. In
pseudo code you could say:

if x == y then
do something

else
do something else

and in Python we would say:

if x == y:
do something

else:
do something else
more things to do

The main things to
remember here are:

1. End the if or else statements

full circle magazine #28 10 contents ^

PROGRAM IN PYTHON - PART 2
with a colon.

2. INDENT your code lines.

Assuming you have more
than one thing to check, you
can use the if/elif/else format.
For example:

x = 5
if x == 1:

print 'X is 1'
elif x < 6:

print 'X is less than
6'
elif x < 10:

print 'X is less than
10'
else:

print 'X is 10 or
greater'

Notice that we are using the
'<' operator to see if x is LESS
THAN certain values - in this
case 6 or 10. Other common
comparison operators would be
greater than '>', less than or
equal to '<=', greater than or
equal to '>=', and not equal
'!='.

Finally, we'll look at a simple
example of the while
statement. The while
statement allows you to create

a loop doing a series of
steps over and over,
until a specific
threshold has been
reached. A simple
example would be
assigning a variable
“loop” to 1. Then while
the loop variable is less
than or equal to 10, print the
value of loop, add one to it and
continue, until, when loop is
greater than 10, quit:

loop = 1
while loop <= 10:

print loop
loop = loop + 1

run in a terminal would
produce the following output:

1
2
3
4
5
6
7
8
9
10

This is exactly what we
wanted to see. Fig.1 (above
right) is a similar example that
is a bit more complicated, but
still simple.

In this example, we are
combining the if statement,
while loop, raw_input
statement, newline escape
sequence, assignment
operator, and comparison
operator ‒ all in one 8 line
program.

Running this example would
produce:

Enter something or 'quit' to
end
=> FROG

You typed FROG
Enter something or 'quit' to
end
=> bird

You typed bird
Enter something or 'quit' to
end
=> 42

You typed 42
Enter something or 'quit' to
end
=> QUIT

You typed QUIT
Enter something or 'quit' to
end

=> quit
quitting

Notice that when we typed
'QUIT', the program did not
stop. That's because we are
evaluating the value of the
response variable to 'quit'
(response == 'quit'). 'QUIT'
does NOT equal 'quit'.

One more quick example
before we leave for this month.
Let's say you want to check to
see if a user is allowed to
access your program. While
this example is not the best
way to do this task, it's a good
way to show some things that
we've already learned.
Basically, we will ask the user
for their name and a password,
compare them with information
that we coded inside the
program, and then make a
decision based on what we
find. We will use two lists ‒ one
to hold the allowed users and

loop = 1
while loop == 1:

response = raw_input("Enter something or 'quit' to end => ")
if response == 'quit':

print 'quitting'
loop = 0

else:
print 'You typed %s' % response

full circle magazine #28 11 contents ^

is owner of
, a

consulting company in Aurora,
Colorado, and has been
programming since 1972. He
enjoys cooking, hiking, music,
and spending time with his
family.

PROGRAM IN PYTHON - PART 2
one to hold the passwords.
Then we'll use raw_input to get
the information from the user,
and finally the if/elif/else
statements to check and
decide if the user is allowed.
Remember, this is not the best
way to do this. We'll examine
other ways in later articles.
Our code is shown in the box
to the right.

Save this as
'password_test.py' and run it
with various inputs.

The only thing that we
haven't discussed yet is in the
list checking routine starting
with 'if usrname in users:'.
What we are doing is checking
to see if the user's name that
was entered is in the list. If it
is, we get the position of the
user's name in the list users.
Then we use
users.index(usrname) to get
the position in the users list so
we can pull the password,
stored at the same position in
the passwords list. For
example, John is at position 1
in the users list. His password,
'dog' is at position 1 of the
passwords list. That way we
can match the two. Should be

pretty easy to understand at
this point.

#---
#password_test.py
example of if/else, lists, assignments,raw_input,
comments and evaluations
#---
Assign the users and passwords
users = ['Fred','John','Steve','Ann','Mary']
passwords = ['access','dog','12345','kids','qwerty']
#---
Get username and password
usrname = raw_input('Enter your username => ')
pwd = raw_input('Enter your password => ')
#---
Check to see if user is in the list
if usrname in users:

position = users.index(usrname) #Get the position in the list of the users
if pwd == passwords[position]: #Find the password at position

print 'Hi there, %s. Access granted.' % usrname
else:

print 'Password incorrect. Access denied.'
else:

print "Sorry...I don't recognize you. Access denied."

full circle magazine #29 7 contents ^

HOW-TO Program In Python - Part 3

FCM#27-28 - Python Parts 1-2

GraphicsDev Internet M/media System

HDDCD/DVD USB Drive Laptop Wireless

I
n the last article, we
learned about lists, literal
substitution, comments,
equate versus assignment,

if statements and while
statements. I promised you that
in this part we would learn
about modules and functions.
So let's get started.

Modules
Modules are a way to extend

your Python programming. You
can create your own, or use

those that come with Python,
or use modules that others
have created. Python itself
comes with hundreds of
various modules that make
your programming easier. A list
of the global modules that
come with Python can be found
at
http://docs.python.org/modinde
x.html. Some modules are
operating system specific, but
most are totally cross platform
(can be used the same way in
Linux, Mac and Microsoft
Windows). To be able to use an
external module, you must
import it into your program.
One of the modules that comes
with Python is called 'random'.
This module allows you to
generate pseudo-random
numbers. We'll use the module
shown above right in our first
example.

Let's examine each line of
code. The first four lines are
comments. We discussed them
in the last article. Line five tells
Python to use the random
module. We have to explicitly

tell Python to
do this.

Line seven
sets up a 'for'
loop to print 14
random
numbers. Line
eight uses the
randint() function to print a
random integer between 1 and
10. Notice we must tell Python
what module the function
comes from. We do this by
saying (in this case)
random.randint. Why even
create modules? Well, if every
possible function were included
directly into Python, not only
would Python become
absolutely huge and slow, but
bug fixing would be a
nightmare. By using modules,
we can segment the code into
groups that are specific to a
certain need. If, for example,
you have no need to use
database functionality, you
don't need to know that there
is a module for SQLite.
However, when you need it, it's
already there. (In fact, we'll be

using database modules later
on in this series.)

Once you really get started
in Python programming, you
will probably make your own
modules so you can use the
code you've already written
over and over again, without
having to re-type it. If you need
to change something in that
group of code, you can, with
very little risk of breaking the
code in your main program.
There are limits to this and we
will delve into this later on.
Now, when we used the 'import
random' statement earlier, we
were telling Python to give us
access to every function within
the random module. If,
however, we only needed to
use the randint() function, we

#=======================================
random_example.py
Module example using the random module
#=======================================
import random
print 14 random integers
for cntr in range(1,15):

print random.randint(1,10)

full circle magazine #29 8 contents ^

PROGRAM IN PYTHON - PART 3
can re-work the import
statement like this:

from random import randint

Now when we call our
function, we don't have to use
the 'random.' identifier. So, our
code changes to

from random import randint
print 14 random integers
for cntr in range(1,15):

print randint(1,10)

Functions
When we imported the

random module, we used the
randint() function. A function is
a block of code that is
designed to be called, usually
more than once, which makes
it easier to maintain, and to
keep us from typing the same
code over and over and over.
As a very general and gross
statement, any time you have
to write the same code more
than once or twice, that code is
a good candidate for a
function. While the following
two examples are silly, they
make good statements about
using functions. Let's say we
wanted to take two numbers,

add them, then
multiply them, and
then subtract them,
displaying the
numbers and results
each time. To make
matters worse, we
have to do that three
times with three sets
of numbers. Our silly
example would then
look like the text
shown right.

Not only is this a lot of
typing, it lends itself to errors,
either by typing or having to
change something later on.
Instead, we are going to create
a function called 'DoTwo' that
takes the two numbers and
does the math, printing the
output each time. We start by
using the 'def' key word (which
says that we are going to
define
the
functi
on).
After
'def'
we
add
the
name
we

select for the function, and
then a list of parameters (if
any) in parentheses. This line is
then closed by a colon (:). The
code in the function is
indented. Our improved silly
example (#2) is shown below.

As you can see, there's a lot
less typing involved — 8 lines
instead of 12 lines. If we need
to change something in our

function, we can do it without
causing too many issues to our
main program. We call our
function, in this case, by using
the function name and putting
the parameters after.

Here is another example of
a function. Consider the
following requirements.

We want to create a

#silly example
print 'Adding the two numbers %d and %d = %d ' % (1,2,1+2)
print 'Multiplying the two numbers %d and %d = %d ' % (1,2,1*2)
print 'Subtracting the two numbers %d and %d = %d ' % (1,2,1-2)
print '\n'
print 'Adding the two numbers %d and %d = %d ' % (1,4,1+4)
print 'Multiplying the two numbers %d and %d = %d ' % (1,4,1*4)
print 'Subtracting the two numbers %d and %d = %d ' % (1,4,1-4)
print '\n'
print 'Adding the two numbers %d and %d = %d ' % (10,5,10+5)
print 'Multiplying the two numbers %d and %d = %d ' % (10,5,10*5)
print 'Subtracting the two numbers %d and %d = %d ' % (10,5,10-5)
print '\n'

#silly example 2...still silly, but better
def DoTwo(num1,num2):

print 'Adding the two numbers %d and %d = %d ' % (num1,num2,num1+num2)
print 'Multiplying the two numbers %d and %d = %d ' % (num1,num2,num1*num2)
print 'Subtracting the two numbers %d and %d = %d ' % (num1,num2,num1-num2)
print '\n'

DoTwo(1,2)
DoTwo(1,4)
DoTwo(10,5)

full circle magazine #29 9 contents ^

PROGRAM IN PYTHON - PART 3
program that will print out a
list of purchased items in a
pretty format. It must look
something like the text below.

The cost of each item and
for the total of all items will be
formatted as dollars and cents.
The width of the print out must
be able to be variable. The
values on the left and right
must be variable as well. We
will use 3 functions to do this
task. One prints the top and
bottom line, one prints the
item detail lines including the
total line and one prints the
separator line. Luckily, there
are a number of things that
Python has that will make this
very simple. If you recall, we
printed a string multiplied by 4,
and it returned four copies of
the same string. Well we can
use that to our benefit. To print
our top or bottom line we can
take the desired width,
subtract two for the two +

characters and use “ '=' *
(width-2)”. To make things
even easier, we will use
variable substitution to put all
these items on one line. So our
string to print would be coded
as 's ('+',('=' * width-2)),'+').
Now we could have the routine
print this directly, but we will
use the return keyword to send
the generated string back to
our calling line. We'll call our
function 'TopOrBottom' and the
code for this function looks like
this.

def TopOrBottom(width):
width is total width

of returned line
return '%s%s%s' %

('+',('=' * (width-2)),'+')

We could leave out the
comment, but it's nice to be
able to tell at a glance what
the parameter 'width' is. To call
it, we would say 'print
TopOrBottom(40)' or whatever
width we wish the line to be.

Now we have one
function that takes
care of two of the
lines. We can make a
new function to take
care of the separator
line using the same
kind of code...OR we

could modify the function we
just made to include a
parameter for the character to
use in the middle of the pluses.
Let's do that. We can still call it
TopOrBottom.

def
TopOrBottom(character,width):

width is total width
of returned line

character is the
character to be placed
between the '+' characters

return '%s%s%s' %
('+',(character * (width-
2)),'+')

Now, you can see where
comments come in handy.
Remember, we are returning
the generated string, so we
have to have something to
receive it back when we make
the call to it. Instead of
assigning it to another string,
we'll just print it. Here's the
calling line.

print TopOrBottom('=',40)

So now, not only have we
taken care of three of the lines,
we've reduced the number of
routines that we need from 3
down to 2. So we only have the
center part of the print out to
deal with.

Let's call the new function
'Fmt'. We'll pass it 4 parameter
values as follows:

– the value to print on the
left

– the width of this
“column”

– the value to print on the
right (which should be a
floating value)

– the width of this
“column”

The first task is to format
the information for the right
side. Since we want to format
the value to represent dollars
and cents, we can use a special
function of variable
substitution that says, print the
value as a floating point
number with n number of
places to the right of the
decimal point. The command
would be '%2.f'. We will assign
this to a variable called 'part2'.
So our code line would be
'part2 = '%.2f' % val2'. We also
can use a set of functions
that's built into Python strings
called ljust and rjust. Ljust will
left justify the string, padding
the right side with whatever
character you want. Rjust does

'+===============================+'
'| Item 1 X.XX |'
'| Item 2 X.XX |'
'|-------------------------------|'
'| Total X.XX |'
'+===============================+'

full circle magazine #29 10 contents ^

PROGRAM IN PYTHON - PART 3
the same thing, except the
padding goes on the left side.
Now for the neat bit. Using
substitutions we throw
together a big string and return
that to the calling code. Here is
our next line.

return 'ss' % ('|
',val1.ljust(leftbit-2,'
'),part2.rjust(rightbit-2,'
'),' |')

While this looks rather
daunting at first, let's dissect it
and see just how easy it is:

- We will send back
our created string to the
calling code.

- We are going to stick in
4 values in the string. Each
%s is a place holder.

- Starts the variable list
- Print these literals

-
Take the variable val1 that we
were passed, left justify it
with spaces for (leftbit-2)
characters. We subtract 2 to
allow the '| ' on the left side.

-
Right justify the formatted
string of the price rightbit-2
spaces. ' |' - finish the string.

That's all there is to it.

While we should really do some
error checking, you can use
that as something to play with
on your own. So...our Fmt
function is really only two lines
of code outside of the
definition line and any
comments. We can call it like
this.

print Fmt('Item
1',30,item1,10)

Again, we could assign the
return value to another string,

but we can just
print it. Notice
that we are
sending 30 for
the width of the
left bit and 10
for the width of
the right. That equals the 40
that we sent to our
TopOrBottom routine earlier.
So, fire up your editor and type
in the code below.

Save the code as
'pprint1.py' and run it. Your

output should look something
like the text shown above right.

While this is a very simple
example, it should give you a
good idea of why and how to
use functions. Now, let's
extend this out a bit and learn

#pprint1.py
#Example of semi-useful functions

def TopOrBottom(character,width):
width is total width of returned line
return '%s%s%s' % ('+',(character * (width-2)),'+')

def Fmt(val1,leftbit,val2,rightbit):
prints two values padded with spaces
val1 is thing to print on left, val2 is thing to print on right
leftbit is width of left portion, rightbit is width of right portion
part2 = '%.2f' % val2
return '%s%s%s%s' % ('| ',val1.ljust(leftbit-2,' '),part2.rjust(rightbit-2,' '),' |')

Define the prices of each item
item1 = 3.00
item2 = 15.00
Now print everything out...
print TopOrBottom('=',40)
print Fmt('Item 1',30,item1,10)
print Fmt('Item 2',30,item2,10)
print TopOrBottom('-',40)
print Fmt('Total',30,item1+item2,10)
print TopOrBottom('=',40)

+======================================+
| Item 1 3.00 |
| Item 2 15.00 |
+--------------------------------------+
| Total 18.00 |
+======================================+

full circle magazine #29 11 contents ^

is owner of
, a

consulting company in Aurora,
Colorado, and has been
programming since 1972. He
enjoys cooking, hiking, music,
and spending time with his
family.

PROGRAM IN PYTHON - PART 3
more about lists. Remember
back in part 2 when we first
discussed lists? Well one thing
that I didn't tell you is that a
list can contain just about
anything, including lists. Let's
define a new list in our
program called itms and fill it
like this:

itms =
[['Soda',1.45],['Candy',.75],
['Bread',1.95],['Milk',2.59]]

If we were to access this as
a normal list we would use
print itms[0]. However, what
we would get back is
['Soda',1.45], which is not
really what we were looking for
under normal circumstances.
We want to access each item in
that first list. So we would use
'print itms[0][0]' to get 'Soda'
and [0][1] to get the cost or
1.45. So, now we have 4 items
that have been purchased and
we want to use that
information in our pretty print
routine. The only thing we have
to change is at the bottom of
the program. Save the last
program as 'pprint2.py', then
comment out the two itemx
definitions and insert the list
we had above. It should look

like this now.

#item1 = 3.00
#item2 = 15.00
itms =
[['Soda',1.45],['Cand
y',.75],['Bread',1.95
],['Milk',2.59]]

Next, remove all
the lines that call
Fmt(). Next add the
following lines (with
#NEW LINE at the end) to
make your code look like the
text shown right.

I set up a counter variable
for loop that cycles through the
list for each item there. Notice
that I've also added a variable
called total. We set the total to
0 before we go into our for
loop. Then as we print each
item sold, we add the cost to
our total. Finally, we print the
total out right after the
separator line. Save your
program and
run it. You
should see
something like
the text shown
below.

If you
wanted to get

wild and crazy, you could add a
line for tax as well. Handle it
close to the same way we did
the total line, but use (total *
.086) as the cost.

print
Fmt('Tax:',30,total*.086,10)

If you would like to, you can
add more items to the list and
see how it works.

That's it for this time. Next
time we'll concentrate on
classes.

itms = [['Soda',1.45],['Candy',.75],['Bread',1.95],['Milk',2.59]]

print TopOrBottom('=',40)

total = 0 #NEW LINE
for cntr in range(0,4): #NEW LINE

print Fmt(itms[cntr][0],30,itms[cntr][1],10) #NEW LINE
total += itms[cntr][1] #NEW LINE

print TopOrBottom('-',40)
print Fmt('Total',30,total,10) #CHANGED LINE
print TopOrBottom('=',40)

+======================================+
| Soda 1.45 |
| Candy 0.75 |
| Bread 1.95 |
| Milk 2.59 |
+--------------------------------------+
| Total 6.74 |
+======================================+

full circle magazine #30 7 contents ^

HOW-TO Program In Python - Part 4

FCM#27-29 - Python Parts 1-3

GraphicsDev Internet M/media System

HDDCD/DVD USB Drive Laptop Wireless

I
promised last time that we
would discuss classes. So,
that's what we'll
concentrate on. What are

classes and what good are they?

A class is a way of
constructing objects. An object
is simply a way of handling
attributes and behaviors as a
group. I know this sounds
confusing, but I'll break it down
for you. Think of it this way. An
object is a way to model
something in the real world. A

class is a method we use to
implement this. For example,
we have three dogs at home. A
Beagle, a Lab and a German
Shepherd/Blue Heeler mix. All
three are dogs, but are all
different. There are common
attributes among the three of
them, but each dog has
separate attributes as well. For
example, the Beagle is short,
chubby, brown, and grumpy.
The Lab is medium-sized,
black, and very laid back. The
Shepherd/Heeler mix is tall,
skinny, black, and more than a
bit crazy. Right away, some
attributes are obvious.
Short/medium-sized/tall are all
attributes of height. Grumpy,
laid back, and crazy are all

attributes of mood. On the
behavior side of things, we can
consider eating, sleeping,
playing, and other actions.

All three are of the class
'Dog'. Going back to the
attributes that we used to
describe each above, we have
things such as Dog.Name,
Dog.Height, Dog.Build (skinny,
chubby, etc.), and Dog.Color.
We also have behaviors such
as Dog.Bark, Dog.Eat,
Dog.Sleep, and so on.

As I said before, each of the
dogs is a different breed. Each
breed would be a sub-class of
the class Dog. In a diagram, it
would look like this.

/--Beagle
Dog ---|-- Lab

\--Shepherd/Heeler

Each sub-class inherits all of
the attributes of the Dog class.
Therefore, if we create an
instance of Beagle, it gets all of
the attributes from its parent
class, Dog.

Beagle = Dog()
Beagle.Name = 'Archie'
Beagle.Height = 'Short'
Beagle.Build = 'Chubby'
Beagle.Color = 'Brown'

Starting to make sense? So,
let's create our gross Dog class
(shown above). We'll start with
the keyword "class" and the
name of our class.

class Dog():
def __init__(self,dogname,dogcolor,dogheight,dogbuild,dogmood,dogage):

#here we setup the attributes of our dog
self.name = dogname
self.color = dogcolor
self.height = dogheight
self.build = dogbuild
self.mood = dogmood
self.age = dogage
self.Hungry = False
self.Tired = False

full circle magazine #30 8 contents ^

PROGRAM IN PYTHON - PART 4
Before we go any further in

our code, notice the function
that we have defined here. The
function __init__ (two
underscores + 'init' + two
underscores) is an initialization
function that works with any
class. As soon as we call our
class in code, this routine is
run. In this case, we have set
up a number of parameters to
set some basic information
about our class: we have a
name, color, height, build,
mood, age, and a couple of
variables Hungry and Tired.
We'll revisit these in a little bit.
Now let's add some more code.

Beagle =
Dog('Archie','Brown','Short',
'Chubby','Grumpy',12)
print Beagle.name
print Beagle.color
print Beagle.mood
print Beagle.Hungry

This is UNINDENTED code
that resides outside of our
class, the code that uses our
class. The first line creates an
instance of our dog class called
Beagle. This is called
instantiation. When we did this,
we also passed certain
information to the instance of
the class, such as the Beagle's

name, color, and so on. The
next four lines simply query
the Beagle object and get back
information in return. Time for
more code. Add the code
shown in the top right box into
the class after the __init__
function.

Now we can call it with
Beagle.Eat() or Beagle.Sleep().
Let's add one more method.
We'll call it Bark. Its code is
shown right.

This one I've made more
flexible. Depending on the
mood of the dog, the bark will
change. Shown on the next
page is the full class code so
far.

So, when we run this we'll
get

My name is Archie
My color is Brown
My mood is Grumpy
I am hungry = False
Sniff Sniff...Not Hungry
Yum Yum...Num Num
GRRRRR...Woof Woof

Now, that takes care of the
grumpy old Beagle. However, I
said earlier that I have 3 dogs.
Because we coded the class

carefully, all we have to do is
create two more instances of
our dog class.

Lab =
Dog('Nina','Black','Medium','
Heavy','Laid Back',7)
Heeler =
Dog('Bear','Black','Tall','Sk
inny','Crazy',9)
print 'My Name is %s' %
Lab.name
print 'My color is %s' %
Lab.color
print 'My Mood is %s' %
Lab.mood
print 'I am hungry = %s' %
Lab.Hungry
Lab.Bark()
Heeler.Bark()

Notice that I created the
instances of both of the dogs
before I did the print
statements. That's not a
problem, since I “defined” the
instance before I called any of
the methods. Here is the full
output of our dog class
program.

My name is Archie
My color is Brown
My mood is Grumpy
I am hungry = False
Sniff Sniff...Not Hungry
Yum Yum...Num Num
GRRRRR...Woof Woof
My Name is Nina

def Eat(self):
if self.Hungry:

print 'Yum Yum...Num Num'
self.Hungry = False

else:
print 'Sniff Sniff...Not Hungry'

def Sleep(self):
print 'ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ'
self.Tired = False

def Bark(self):
if self.mood == 'Grumpy':

print 'GRRRRR...Woof Woof'
elif self.mood == 'Laid Back':

print 'Yawn...ok...Woof'
elif self.mood == 'Crazy':

print 'Bark Bark Bark Bark Bark Bark Bark'
else:

print 'Woof Woof'

full circle magazine #30 9 contents ^

PROGRAM IN PYTHON - PART 4

is owner of
, a

consulting company in Aurora,
Colorado, and has been
programming since 1972. He
enjoys cooking, hiking, music,
and spending time with his
family.

My color is Black
My Mood is Laid Back
I am hungry = False
Yawn...ok...Woof
Bark Bark Bark Bark Bark
Bark Bark

Now that you have the
basics, your homework will be
to expand our dog class to
allow for more methods, such
as maybe Play or
EncounterStrangeDog or
something like this.

Next time, we will start
discussing GUI or Graphical
User Interface programming.
We will be using

for this.

class Dog():
def __init__(self,dogname,dogcolor,dogheight,dogbuild,dogmood,dogage):

#here we setup the attributes of our dog
self.name = dogname
self.color = dogcolor
self.height = dogheight
self.build = dogbuild
self.mood = dogmood
self.age = dogage
self.Hungry = False
self.Tired = False

def Eat(self):
if self.Hungry:

print 'Yum Yum...Num Num'
self.Hungry = False

else:
print 'Sniff Sniff...Not Hungry'

def Sleep(self):
print 'ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ'
self.Tired = False

def Bark(self):
if self.mood == 'Grumpy':

print 'GRRRRR...Woof Woof'
elif self.mood == 'Laid Back':

print 'Yawn...ok...Woof'
elif self.mood == 'Crazy':

print 'Bark Bark Bark Bark Bark Bark Bark'
else:

print 'Woof Woof'

Beagle = Dog('Archie','Brown','Short','Chubby','Grumpy',12)
print 'My name is %s' % Beagle.name
print 'My color is %s' % Beagle.color
print 'My mood is %s' % Beagle.mood
print 'I am hungry = %s' % Beagle.Hungry
Beagle.Eat()
Beagle.Hungry = True
Beagle.Eat()
Beagle.Bark()

full circle magazine #31 contents ^

HOW-TO Program In Python - Part 5

FCM#27-30 - Python Parts 1-4

GraphicsDev Internet M/media System

HDDCD/DVD USB Drive Laptop Wireless

I
f you are like me, you will
HATE the first part of this
installation. I HATE it when
an author tells me that I

have to double read every word
in their book/chapter/article,
because I just KNOW it will be a
snore - even when I know it's
for my own good, and I will end
up doing it anyway.

Consider yourself warned.
PLEASE read the following
boring stuff carefully. We'll get
to the fun stuff soon, but we

need to get some ground work
covered before we can really
talk about trying to program.

FIRST you need to install
Boa Constructor and wxPython.
Use Synaptic and select both
wxPython and Boa Constructor.
Once installed, you should find
Boa under
Applications|Programming\Boa
Constructor. Go ahead and
start it up. It will make things a
bit easier. Once the application
starts, you will see three
different windows (or frames):
one across the top, and two
across the bottom. You might
have to resize and move them
a bit, but get things to a point
where it looks something like
this:

The top frame is called the
tool frame. The bottom-left
frame is the inspector frame,
and the bottom-right frame is
the editor frame. On the tool
frame, you have various tabs
(New, Containers/Layout, etc.)
that will allow you to start new
projects, add frames to
existing projects, and add
various controls to the frames
for your application. The
inspector frame will become
very important as we start to
add controls to our application.
The editor frame allows us to
edit our code, save our
projects, and more. Moving our
attention back to the tool
frame, let's take a look at each
tab - starting with the “New”
tab. While there are many
options available here, we will
discuss only two of them. They
are the 5th and 6th buttons
from the left: wx.App and
wx.Frame. Wx.App allows us to
create a complete application
beginning with two auto-
generated files. One is a frame
file and the other is an
application file. This is the

method I prefer to use. The
wx.Frame is used to add more
frames to our application
and/or create a standalone app
from a single source file. We'll
discuss this later.

Now look at the
Containers/Layout tab. Many
goodies here. The ones you'll
use most are the wx.Panel
(first on the left) and the sizers
(2,3,4,5 and 6 from the right).
Under Basic Controls, you'll
find static text controls
(labels), text boxes, check
boxes, radio buttons, and
more. Under Buttons, you'll
find various forms of buttons.
List Controls has data grids and
other list boxes. Let's jump to
Utilities where you'll find timers
and menu items.

Here are a few things to
remember as we are getting
ready for our first app. There
are a few bugs in the Linux
version. One is that SOME
controls won't allow you to
move them in the designer.
Use the <Ctrl>+Arrow keys to

full circle magazine #31 contents ^

PROGRAM IN PYTHON - PART 5
move or tweak the position of
your controls. Another one
you'll find when you try the
tutorials that come with Boa
Constructor - when placing a
panel control, it's hard to see.
Look for the little boxes (I'll
show you this soon). You can
also use the Objs tab on the
Inspector frame and select it
that way.

Okay, here we go. Under the
'New' tab of the tool frame,
select wx.App (5th button from
the left). This will create two
new tabs in the editor frame:
one named “*(App1)*”, the
other named “*(Frame1)*”.
Believe it or not, the VERY first
thing we want to do is save our
two new files, starting with the
Frame1 file. The save button is
the 5th button from the left in
the Editor Frame. A “Save As”
frame will pop up asking you
where you want to save the file
and what you want to call it.
Create a folder in your home
folder called GuiTests, and save
the file as “Frame1.py”. Notice
that the “*(Frame1)*” tab now
shows as “Frame1”. (The “*(“
says that the file needs to be
saved.) Now do the same thing
with the App1 tab.

Now let's examine a few of
the buttons on the Editor Tool
bar. The important ones for
now are the Save (5th from the
left) and Run (Yellow arrow, 7th
from the left). If you are in a
frame tab (Frame1 for
example) there will be some
extra buttons you need to
know about. For now it's the
Designer button:

It is an important one. It
allows us to design our GUI
frame - which is what we'll do
now. When you click on it you
will be presented with a blank
frame.

This is a blank canvas for
you to put whatever controls
you need to (within reason).
The first thing we want to do is
place a wx.panel control.
Almost everything I have read

says not to put controls (other
than a wx.panel) directly on a
frame. So, click on the
Containers/Layout tab in the
Tool Frame, then click on the
wx.Panel button. Next, move
over to the new frame that you
are working on and click
somewhere on the inside of the
frame. You'll know it worked if
you see something like this:

Remember when I warned
you about the bugs? Well, this
is one of them. Don't worry.
See the 8 little black squares?
That's the limits of the panel. If
you wanted, you could click
and drag one of them to resize
the panel, but for this project
what we want is to make the
panel cover the entire frame.
Simply resize the FRAME just a
little bit at this point. Now we
have a panel to put our other
controls on. Move the frame
you are working on until you

can see the tool box for the
Editor frame. Two new buttons
have appeared: a check and an
“X”. The “X” will cause the
changes you made to be
thrown away.

The Check button:

is called the “Post” button. This
will cause your changes to be
written into our frame file. You
still have to save the frame file,
but this will get the new things
into the file. So, click on the
Post button. There's also a post
button on the Inspector frame,
but we'll deal with that later.
Now save your file.

Go back into the Design
mode. Click the 'Buttons' tab
on the Tool frame and then
click the first button on the left,
the wx.Button. Then add it
somewhere close to the middle
of your frame. You'll have
something that looks close to
this:

full circle magazine #31 contents ^

PROGRAM IN PYTHON - PART 5
Notice that there are 8 small

squares around it just like the
panel. These are resize
handles. It also shows us what
control is currently selected. In
order to move this closer to the
center of the frame, hold down
the Control key (Ctrl) and while
that's being pressed, use the
arrow keys to move it where
you want it. Now, let's look at
the Inspector frame. There are
four tabs. Click on the 'Constr'
tab. Here we can change the
label, name, position, size and
style. For now, let's change the
name to 'btnShowDialog' and
the Label property to 'Click Me'.

Now, let's skip over all the
rest of that tab and go to the
Objs tab. This tab shows all the
controls you have and their
parent/child relationships. As
you can see, the button is a
child of panel1, which is a child
of Frame1.

Post (check button) and
save your changes. Go back to
the designer once again, and
notice that (assuming you still
have the 'Objs' tab in the
inspector frame selected),
Frame1 is now selected. This is
good because it's what we
want. Go back to the 'Constr'
tab, and change the title from
'Frame1' to 'Our First GUI'. Post
and save one more time. Now
let's run our app. Click the
yellow Run button on the Editor
frame.

Click all you want on the
button, but nothing will
happen. Why? Well, we didn't

tell the button to do anything.
For that, we need to set up an
event to happen, or fire, when
the user clicks our button. Click
on the X in the upper-right
corner to finish running the
frame. Next, go back to the
designer, select the button and
go into the 'Evts' tab in the
inspector frame. Click on
ButtonEvent and then double
click on the wx.EVT_BUTTON
text that shows up, and notice
that in the window below we
get a button event called
'OnBtnShowDialogButton'. Post
and save.

Before we go any further,
let's see what we've got in the
way of code (page 11).

The first line is a comment
that tells Boa Constructor that

this is a boa file. It's ignored by
the Python compiler, but not by
Boa. The next line imports
wxPython. Now jump down to
the class definition.

At the top, there's the
__init_ctrls method. Notice the
comment just under the
definition line. Don't edit the
code in this section. If you do,
you will be sorry. Any place
BELOW that routine should be
safe. In this routine, you will
find the definitions of each
control on our frame.

Next, look at the __init__
routine. Here you can put any
calls to initializing code. Finally,
the OnBtnShowDialogButton
routine. This is where we will
put our code that will do the
work when the user clicks the
button. Notice that there is
currently an event.Skip() line
there. Simply stated, this says
just exit when this event fires.

Now, what we are going to
do is call a message box to pop
up with some text. This is a
common thing for
programmers to do to allow the
user to know about something -
an error, or the fact that a

full circle magazine #31 contents ^

is owner of
, a

consulting company in Aurora,
Colorado, and has been
programming since 1972. He
enjoys cooking, hiking, music,
and spending time with his
family.

process has finished. In this
case, we will be calling the
wx.MessageBox built in
routine. The routine is called
with two parameters. The first
is the text we wish to send in
the message box and the
second is the title for the
message box. Comment out
the line event.Skip() and put in
the following line.

wx.MessageBox('You Clicked
the button', 'Info')

Save and click the Run
button (yellow arrow). You
should see something like this:

And when you click the
button you should see
something like this:

Understand here
that this is just about
the simplest way to
call the messagebox
routine. You can have
more parameters as
well.

Here's a quick
rundown on how to
change the way the
icons work on the
message box (more
next time).

- Show a question icon

- Show an alert
icon

- Show an
error icon

-
Show an info icon

The way to write this would
be

wx.MessageBox('You Clicked
the button', 'Info',
wx.ICON_INFORMATION)

or whatever icon you wanted

to use that suited the situation.
There are also various button
arrangement assignments
which we'll talk about next
time.

#Boa:Frame:Frame1
import wx
def create(parent):

return Frame1(parent)
[wxID_FRAME1, wxID_FRAME1BTNSHOWDIALOG, wxID_FRAME1PANEL1,
] = [wx.NewId() for _init_ctrls in range(3)]

class Frame1(wx.Frame):
def _init_ctrls(self, prnt):

generated method, don't edit
wx.Frame.__init__(self, id=wxID_FRAME1, name='', parent=prnt,

pos=wx.Point(543, 330), size=wx.Size(458, 253),
style=wx.DEFAULT_FRAME_STYLE, title=u'Our First GUI')

self.SetClientSize(wx.Size(458, 253))
self.panel1 = wx.Panel(id=wxID_FRAME1PANEL1, name='panel1', parent=self,

pos=wx.Point(0, 0), size=wx.Size(458, 253),
style=wx.TAB_TRAVERSAL)

self.btnShowDialog = wx.Button(id=wxID_FRAME1BTNSHOWDIALOG,
label=u'Click Me', name=u'btnShowDialog', parent=self.panel1,
pos=wx.Point(185, 99), size=wx.Size(85, 32), style=0)

self.btnShowDialog.Bind(wx.EVT_BUTTON, self.OnBtnShowDialogButton,
id=wxID_FRAME1BTNSHOWDIALOG)

def __init__(self, parent):
self._init_ctrls(parent)

def OnBtnShowDialogButton(self, event):
event.Skip()

PROGRAM IN PYTHON - PART 5

full circle magazine #32 contents ^

HOW-TO Program In Python - Part 6

FCM#27-31 - Python Parts 1-5

GraphicsDev Internet M/media System

HDDCD/DVD USB Drive Laptop Wireless

I
hope you've been playing
with Boa Constructor since
our last meeting. First we
will have a very simple

program that will show one
frame, then allow you to click
on a button that will pop up
another frame. Last time we did
a message box. This time we
will do a totally separate frame.
This can be helpful when doing
an application with multiple
frames or windows. So... here
we go...

Start up Boa Constructor
and close all tabs in the Editor
frame with the exception of
Shell and Explorer by using the
(Ctrl-W) key combination. This
ensures that we will be starting
totally fresh. Now create a new
project by clicking on the
wx.App button (see last time's
article if needed).

Before you do anything else,
save Frame1 as
“FrameMain.py” and then save
App1 as “Gui2.py”. This is
important. With the GUI2 tab
selected in the Editor frame,
move to the Toolbar frame, go
back to the New tab, and add
another frame to our project by
clicking on wx.Frame (which is
right next to the wx.App
button). Make sure that the
Application tab shows both
frames under the Module
column. Now go back to the
new frame and save it as
“FrameSecond.py”:

Next, open FrameMain in
the designer. Add a wx.Panel to
the frame. Resize it a bit to

make the panel cover the
frame. Next we are going to
change some properties - we
didn't do this last time. In the
inspector frame, make sure
that the Constr tab is selected
and set the title to “Main
Frame” and the name to
“FrameMain”. We'll discuss
naming conventions in a bit.
Set the size to 400x340 by
clicking on the Size check box.
This drops down to show
height and width. Height
should be 400 and width
should be 340:

Now click on the Props tab.
Click on the Centered property
and set it to wx.BOTH. Click the
post check-mark and save your
work. Now run your application
by clicking on the button with
the yellow arrow. Our
application shows up in the
center of the screen with the
title of “Main Frame”. Now
close it by clicking on the “X”
in the upper right corner of the
app.

Bring FrameMain back into
the designer. Add two
wx.Buttons to the frame, one
above the other, and close to
the center of the frame. Select
the top button, name that
“btnShowNew”, and set the
label to “Show the other
frame” in the Constr tab of the
Inspector frame. Use the
Shift+Arrow combination to
resize the button so that all the
text is visible, and then use the
Ctrl+Arrow combination to
move it back to the center of
the frame. Select the bottom
button, name that “btnExit”,
and set the label to “Exit”.

full circle magazine #32 contents ^

PROGRAM IN PYTHON - PART 6
Post, save, and run to see your
changes. Exit our app and go
back to the designer. We are
going to add button click
events. Select the top button,
and in the inspector frame,
select the Evts tab. Click on
ButtonEvent, then double click
on wx.Evt_BUTTON. Notice you
should have
“OnBtnShowNewButton” below.
Next, select the btnExit button.
Do the same thing, making
sure it shows
“OnBtnExitButton”. Post and
save. Next go to the Editor
frame and scroll down to the
bottom.

Make sure you have the two
event methods that we just
created. Here's what the frame
should look like so far:

Now it's time to deal with
our other frame. Open
FrameSecond in the designer.

Set the name to
“FrameSecond”, and the title to
“Second Frame”. Set centering
to wx.BOTH. Add a wx.Button,
and center it towards the lower
part of the frame. Set the
name to “btnFSExit”, and
change the title to “Exit”. Set
up a button event for it. Next
add a wx.StaticText control in
the upper portion of the frame
close to the middle. Name it
“stHiThere”, set the label to “Hi
there...I'm the second form!”,
and set the font to Sans, 14
point and weight to wxBOLD.
Now reset the position to be
centered in the form right and
left. You can do this by
unchecking the Position
attribute and use the X position
for right and left, and Y for up
and down until you are happy.
Post and save:

Now that we have designed
our forms, we are going to

create the “glue” that will tie
all this together.

In the Editor frame, click on
the GUI2 tab, then, below that,
click on the Source tab. Under
the line that says “import
FrameMain”, add “import
FrameSecond”. Save your
changes. Next, select the
“FrameMain” tab. Under the
line that says “import wx”, add
a line that says “import
FrameSecond”. Next scroll
down, and find the line that
says “def __init__(self,
parent):”. Add a line after the
“self._init_ctrls(parent)” line
that says “self.Fs =
FrameSecond.FrameSecond(self
)”. Now under the “def
OnBtnShowNewButton(self,
event):” event, comment out
“event.Skip()” and add the
following two lines:

self.Fs.Show()
self.Hide()

Finally, under
“OnBtnExitButton” method,
comment out “event.Skip()”,
and add a line that says
“self.Close()”

What does all this do? OK.

The first thing we did was to
make sure that the application
knew we were going to have
two forms in our app. That's
why we imported both
FrameMain and FrameSecond
in the GUI2 file. Next we
imported a reference for
FrameSecond into FrameMain
so we can call it later. We
initialized it in the “_init_”
method. And in the
“OnBtnShowNewButton” event
we told it that when the button
was clicked, we want to first
show the second frame, and to
hide the main frame. Finally we
have the statement to close
the application when the Exit
button is clicked.

Now, switch to the code for
FrameSecond. The changes
here are relatively small. Under
the “_init_” method, add a line
that says “self.parent =
parent” which adds a variable
self.parent. Finally, under the
click event for FSExitButton,
comment out the
“event.Skip()” line, and add the
following two lines:

self.parent.Show()
self.Hide()

full circle magazine #32 contents ^

PROGRAM IN PYTHON - PART 6
Remember we hid the main

frame when we showed the
second frame, so we have to re-
show it. Finally we hide the
second frame. Save your
changes.

Here is all the code for you
to verify everything (this page
and following page):

Now you can run your
application. If everything went
right, you will be able to click
on btnShownNew, and see the
first frame disappear and
second frame appear. Clicking
on the Exit button on the
second frame will cause that
frame to disappear and the

GUI2 code:

#!/usr/bin/env python
#Boa:App:BoaApp

import wx

import FrameMain
import FrameSecond

modules ={u'FrameMain': [1, 'Main frame of Application',
u'FrameMain.py'],
u'FrameSecond': [0, '', u'FrameSecond.py']}

class BoaApp(wx.App):
def OnInit(self):

self.main = FrameMain.create(None)
self.main.Show()
self.SetTopWindow(self.main)
return True

def main():
application = BoaApp(0)
application.MainLoop()

if __name__ == '__main__':
main()

FrameMain code:

#Boa:Frame:FrameMain

import wx
import FrameSecond

def create(parent):
return FrameMain(parent)

[wxID_FRAMEMAIN, wxID_FRAMEMAINBTNEXIT,
wxID_FRAMEMAINBTNSHOWNEW,
wxID_FRAMEMAINPANEL1,

] = [wx.NewId() for _init_ctrls in range(4)]

class FrameMain(wx.Frame):
def _init_ctrls(self, prnt):

generated method, don't edit
wx.Frame.__init__(self, id=wxID_FRAMEMAIN,

name=u'FrameMain',
parent=prnt, pos=wx.Point(846, 177),

size=wx.Size(400, 340),
style=wx.DEFAULT_FRAME_STYLE, title=u'Main

Frame')
self.SetClientSize(wx.Size(400, 340))
self.Center(wx.BOTH)

self.panel1 = wx.Panel(id=wxID_FRAMEMAINPANEL1,
name='panel1',

parent=self, pos=wx.Point(0, 0),
size=wx.Size(400, 340),

style=wx.TAB_TRAVERSAL)

self.btnShowNew =
wx.Button(id=wxID_FRAMEMAINBTNSHOWNEW,

label=u'Show the other frame',
name=u'btnShowNew',

parent=self.panel1, pos=wx.Point(120,
103), size=wx.Size(168, 29),

style=0)
self.btnShowNew.SetBackgroundColour(wx.Colour(25,

175, 23))
self.btnShowNew.Bind(wx.EVT_BUTTON,

self.OnBtnShowNewButton,
id=wxID_FRAMEMAINBTNSHOWNEW)

full circle magazine #32 contents ^

PROGRAM IN PYTHON - PART 6
FrameMain Code (cont.):

self.btnExit =
wx.Button(id=wxID_FRAMEMAINBTNEXIT, label=u'Exit',

name=u'btnExit', parent=self.panel1,
pos=wx.Point(162, 191),

size=wx.Size(85, 29), style=0)
self.btnExit.SetBackgroundColour(wx.Colour(225,

218, 91))
self.btnExit.Bind(wx.EVT_BUTTON,

self.OnBtnExitButton,
id=wxID_FRAMEMAINBTNEXIT)

def __init__(self, parent):
self._init_ctrls(parent)
self.Fs = FrameSecond.FrameSecond(self)

def OnBtnShowNewButton(self, event):
#event.Skip()
self.Fs.Show()
self.Hide()

def OnBtnExitButton(self, event):
#event.Skip()
self.Close()

FrameSecond code:
#Boa:Frame:FrameSecond

import wx

def create(parent):
return FrameSecond(parent)

[wxID_FRAMESECOND, wxID_FRAMESECONDBTNFSEXIT,
wxID_FRAMESECONDPANEL1,
wxID_FRAMESECONDSTATICTEXT1,

] = [wx.NewId() for _init_ctrls in range(4)]

class FrameSecond(wx.Frame):
def _init_ctrls(self, prnt):

generated method, don't edit
wx.Frame.__init__(self, id=wxID_FRAMESECOND,

name=u'FrameSecond',

parent=prnt, pos=wx.Point(849, 457),
size=wx.Size(419, 236),

style=wx.DEFAULT_FRAME_STYLE, title=u'Second
Frame')

self.SetClientSize(wx.Size(419, 236))
self.Center(wx.BOTH)
self.SetBackgroundStyle(wx.BG_STYLE_COLOUR)

self.panel1 = wx.Panel(id=wxID_FRAMESECONDPANEL1,
name='panel1',

parent=self, pos=wx.Point(0, 0),
size=wx.Size(419, 236),

style=wx.TAB_TRAVERSAL)

self.btnFSExit =
wx.Button(id=wxID_FRAMESECONDBTNFSEXIT, label=u'Exit',

name=u'btnFSExit', parent=self.panel1,
pos=wx.Point(174, 180),

size=wx.Size(85, 29), style=0)
self.btnFSExit.Bind(wx.EVT_BUTTON,

self.OnBtnFSExitButton,
id=wxID_FRAMESECONDBTNFSEXIT)

self.staticText1 =
wx.StaticText(id=wxID_FRAMESECONDSTATICTEXT1,

label=u"Hi there...I'm the second form!",
name='staticText1',

parent=self.panel1, pos=wx.Point(45, 49),
size=wx.Size(336, 23),

style=0)
self.staticText1.SetFont(wx.Font(14, wx.SWISS,

wx.NORMAL, wx.BOLD,
False, u'Sans'))

def __init__(self, parent):
self._init_ctrls(parent)
self.parent = parent

def OnBtnFSExitButton(self, event):
#event.Skip()
self.parent.Show()
self.Hide()

full circle magazine #32 contents ^

is owner of
, a

consulting company in Aurora,
Colorado, and has been
programming since 1972. He
enjoys cooking, hiking, music,
and spending time with his
family.

PROGRAM IN PYTHON - PART 6
main frame to re-appear.
Clicking on the Exit button on
the main frame will close the
application.

I promised you we'd discuss
naming conventions.
Remember way back, we
discussed commenting your
code? Well, by using well-
formed names for GUI controls,
your code is fairly self-
documenting. If you just left
control names as staticText1 or
button1 or whatever, when you
are creating a complex frame
with many controls, especially
if there are a lot of text boxes
or buttons, then naming them
something that is meaningful is
very important. It might not be
too important if you are the
only one who will ever see the
code, but to someone coming
behind you later on, the good
control names will help them
out considerably. Therefore,
use something like the
following:

Control type - Name prefix
Static text - st_
Button - btn_
Text Box - txt_
Check Box - chk_
Radio Button - rb_
Frame - Frm_ or Frame_

You can come up with your
own ideas for naming
conventions as you grow as a
programmer, and in some
instances your employer might
have conventions already in
place.

Next time, we will leave GUI
programming aside for a bit
and concentrate on database
programming. Meanwhile, get

and
loaded on your

system. You will also need
and for

SQLite. If you want to
experiment with MySql as well,
that's a good idea. All are
available via Synaptic.

by Richard Redeiby Richard Redei

full circle magazine #33 contents ^

HOW-TO Program In Python - Part 7

FCM#27-32 - Python Parts 1 - 6

GraphicsDev Internet M/media System

HDDCD/DVD USB Drive Laptop Wireless

G
ood morning Boys
and Girls. It's story
time. Everyone get
settled and comfy.

Ready? Good!

Once upon a time, the world
was ruled by paper. Paper,
paper everywhere. They had to
make special homes for all that
paper. They were called filing
cabinets, and were big metal
things that would take rooms
and rooms and rooms at
businesses to house all the

paper. In each filing cabinet
was something called a file
folder, which attempted to
organize relevant papers
together. But after time, they
would get over-stuffed, and fall
apart when they got old or
opened too many times.

Using these filing cabinets
properly required a college
degree. It could take days to
find all the papers that were in
the various cabinets.
Businesses suffered horribly. It
was a very dark time in the
history of man- and woman-
kind.

Then one day, from the top
of a mountain somewhere (I
personally think it was
Colorado, but I'm not sure),
came a lovely fairy. This fairy
was blue and silver - with
beautiful wings and white hair,
and was about 1 foot tall. Her
name, believe it or not, was
See-Quill. Isn't that a funny
name? Anyway, See-Quill said
that she could fix everything
having to do with all the paper

and filing cabinets and wasted
time, if only people would
believe in computers and her.
She called this power a
“Database”. She said that the
“Database” could replace the
entire filing system. Some
people did, and soon their lives
were very happy. Some didn't,
and their lives stayed the
same, lost in mountains of
paper.

All fairy promises, however,
come with some sort of
requirement. That requirement
was that whoever wanted to
use the power of See-Quill
needed to learn a bit of a
different language. It wouldn't
be too difficult a language to
learn. In fact, it was much like
the one the people already
used. It just has a different way
of saying things, and you had
to think about things very
carefully BEFORE you said
them - to use the power of See-
Quill.

One day, a young boy
named, curiously enough,

User, came to see See-Quill.
He was very impressed with
her beauty, and said “See-
Quill, Please teach me to use
your power.” See-Quill said
that she would.

She said, “First, you have to
know how your information is
laid out. Show me your papers.”

Being a young boy, User
had only a few pieces of paper.
See-Quill said, “User, right now
you could live with papers and
file folders. However, I can get
glimpses of the future, and you
will someday have so many
papers that they would, if
placed on top of each other, be
taller than you by 15 times. We
should use my power.”

So, working together, User
and See-Quill created a
“database thingie” (a fairy
technical term), and User lived
happily ever after.

Of course, the story is not

full circle magazine #33 contents ^

PROGRAM IN PYTHON - PART 7
completely true. However,
using databases and SQL can
make our lives easier. This
time, we will learn about some
simple SQL queries, and how to
use them in a program. Some
people might think that this
might not be the “correct” way
or the “best” way, but it is a
reasonable way. So let's begin.

Databases are like the filing
cabinets in our story above.
Data tables are like the file
folders. The individual records
in the tables are like the sheets
of paper. Each piece of
information is called a field. It
falls together very nicely,
doesn't it? You use SQL
(pronounced See-Quill)
statements to do things with
the data. SQL stands for
Structured Query Language,
and is basically designed to be
an easy way to use databases.
In practice, however, it can
become very complicated. We
will keep things pretty simple
for this installment.

We need to create a plan,
like starting any construction
project. So, think of a recipe
card, which is a good thing to
think about, since we are going

to create a recipe database
program. Around my house,
recipes come in various forms:
3x5 card, 8x10 pieces of paper,
napkins with the recipe
scribbled on it, pages from
magazines, and even stranger
forms. They can be found in
books, boxes, binders, and
other things. However, they all
pretty much have one thing in
common: the format. In almost
every case, at the top you have
the recipe title and maybe how
many servings it makes and
where it came from. The
middle contains the list of
ingredients, and the bottom
contains the instructions -
dealing with the order that
things are done in, the cooking
time, and so on. We will use
this general format as the
template of our database
project. We will break this up
into two parts. We'll create the
database this time, and the
application to read and update
the database next time.

Here's an example. Let's say
we have the recipe shown right.

Notice the order we just
discussed. Now when we
design our database - we could

make it very large and
have one record for
everything in the recipe.
That, however, would be
clumsy and hard to deal
with. Instead, we are going
to use the recipe card as a
template. One table will
handle the top of the card,
or the gross information
about the recipe; one table
will handle the middle of
the card, or the ingredients
information; and one table
will handle the bottom, or
the instructions.

Make sure you have
installed SQLite and APSW.
SQLite is a small database
engine that doesn't require
you to have a separate
database server, which
makes it ideal for our little
application. Everything you
learn here can be used
with larger database
systems like MySQL and
others. The other good
thing about SQLite is that
it uses limited data types.
These types are Text,
Numeric, Blob, and Integer
Primary Key. As you have
learned already, text is
pretty much anything. Our

Serves: 4

: Greg Walters

1 cup parboiled Rice (uncooked)
1 pound Hamburger
2 cups Water
1 8 oz can Tomato Sauce
1 small Onion chopped
1 clove Garlic chopped
1 tablespoon Ground Cumin
1 teaspoon Ground Oregano
Salt and Pepper to taste
Salsa to taste

Brown hamburger.

Add all other ingredients.

Bring to boil.

Stir, lower to simmer and cover.

Cook for 20 minutes.

Do not look, do not touch.

Stir and serve.

full circle magazine #33 contents ^

PROGRAM IN PYTHON - PART 7
ingredients, instructions, and
the title of our recipe are all
text types - even though they
have numbers in them.
Numeric datatypes store
numbers. These can be integer
values or floating point or real
values. Blobs are binary data,
and can include things like
pictures and other things.
Integer Primary Key values are
special. The SQLite database
engine automatically puts in a
guaranteed unique integer
value for us. This will be
important later on.

APSW stands for Another
Python SQLite Wrapper and is a
quick way to communicate with
SQLite. Now let's go over some
of the ways to create our SQL
statements.

To obtain records from a
database, you would use the
SELECT statement. The format
would be:

SELECT [what] FROM [which
table(s)] WHERE [Constraints]

So, if we want to get all the
fields from the Recipes table
we would use:

SELECT * FROM Recipes

If you wish to obtain just a
record by its primary key, you
have to know what that value
is (pkID in this instance), and
we have to include a WHERE
command in the statement. We
could use:

SELECT * FROM Recipes WHERE
pkID = 2

Simple enough...right?
Pretty much plain language.
Now, suppose we want to just
get the name of the recipe and
the number of servings it
makes - for all recipes. It's
easy. All you have to do is
include a list of the fields that
you want in the SELECT
statement:

SELECT name, servings FROM
Recipes

To insert records, we use the
INSERT INTO command. The
syntax is

INSERT INTO [table name]
(field list) VALUES (values
to insert)

So, to insert a recipe into
the recipe table the command

would be

INSERT INTO Recipes
(name,servings,source)
VALUES (“Tacos”,4,”Greg”)

To delete a record we can
use

DELETE FROM Recipes WHERE
pkID = 10

There's also an UPDATE
statement, but we'll leave that
for another time.

More on SELECT
In the case of our database,

we have three tables, each can
be related together by using
recipeID pointing to the pkID of
the recipe table. Let's say we
want to get all the instructions
for a given recipe. We can do it
like this:

SELECT Recipes.name,
Recipes.servings,
Recipes.source,
Instructions.Instructions
FROM Recipes LEFT JOIN
instructions ON
(Recipes.pkid =
Instructions.recipeid) WHERE
Recipes.pkid = 1

However, that is a lot of

typing and very redundant. We
can use a method called
aliasing. We can do it like this:

SELECT r.name, r.servings,
r.source, i.Instructions
FROM Recipes r LEFT JOIN
instructions i ON (r.pkid =
i.recipeid) WHERE r.pkid = 1

It's shorter and still
readable. Now we will write a
small program that will create
our database, create our
tables, and put some simple
data into the tables to have
something to work with. We
COULD write this into our full
program, but, for this example,
we will make a separate
program. This is a run-once
program - if you try to run it a
second time, it will fail at the
table creation statements.
Again, we could wrap it with a
try...catch handler, but we'll do
that another time.

We start by importing the
APSW wrapper.

import apsw

The next thing we need to
do is create a connection to our
database. It will be located in
the same directory where we

full circle magazine #33 contents ^

PROGRAM IN PYTHON - PART 7
have our application. When we
create this connection, SQLite
automatically looks to see if
the database exists. If so, it
opens it. If not, it creates the
database for us. Once we have
a connection, we need what is
called a cursor. This creates a
mechanism that we can use to
work with the database. So
remember, we need both a
connection and a cursor. These
are created like this:

Opening/creating database

connection=apsw.Connection("c
ookbook1.db3")
cursor=connection.cursor()

Okay - we have our
connection and our cursor. Now
we need to create our tables.
There will be three tables in
our application. One to hold the
gross recipe information, one
for the instructions for each
recipe, and one to hold the list
of the ingredients. Couldn't we
do it with just one table? Well,
yes we could, but, as you will
see, it will make that one table
very large, and will include a
bunch of duplicate information.

We can look at the table

structure like this. Each column
is a separate table as shown
above right.

Each table has a field called
pkID. This is the primary key
that will be unique within the
table. This is important so that
the data tables never have a
completely duplicated record.
This is an integer data type,
and is automatically assigned
by the database engine. Can
you do without it? Yes, but you
run the risk of accidentally
creating a duplicated record id.
In the case of the Recipes
table, we will use this number
as a reference for which
instruction and which set of
ingredients go with that recipe.

We would first put the
information into the database
so that the name, source and
number served goes into the
recipe table. The pkID is

automatically assigned. Let's
pretend that this is the very
first record in our table, so the
database engine would assign
the value 1 to the pkID. We will
use this value to relate the
information in the other tables
to this recipe. The instructions
table is simple. It just holds the
long text of the instructions, its
own pkID and then a pointer to
the recipe in the recipe table.
The ingredients table is a bit
more complicated in that we
have one record for each
ingredient as well as its own
pkID and the pointer back to
our recipe table record.

So in order to create the
recipe table, we define a string
variable called sql, and assign
it the command to create the
table:

sql = 'CREATE TABLE Recipes
(pkiD INTEGER PRIMARY KEY,
name TEXT, servings TEXT,

source TEXT)'

Next we have to tell ASPW
to actually do the sql command:

cursor.execute(sql)

Now we create the other
tables:

sql = 'CREATE TABLE
Instructions (pkID INTEGER
PRIMARY KEY, instructions
TEXT, recipeID NUMERIC)'

cursor.execute(sql)

sql = 'CREATE TABLE
Ingredients (pkID INTEGER
PRIMARY KEY, ingredients
TEXT, recipeID NUMERIC)'

cursor.execute(sql)

Once we have the tables
created, we will use the INSERT
INTO command to enter each
set of data into its proper table.

Remember, the pkID is

RECIPES INSTRUCTIONS INGREDIENTS
------------ ---------------------- --------------------
pkID (Integer Primary Key) pkID(Integer Primary Key) pkID (Integer Primary Key)
name (Text) recipeID (Integer) recipeID (Integer)
source (Text) instructions (Text) ingredients (Text)
serves (Text)

full circle magazine #33 contents ^

is owner of
, a

consulting company in Aurora,
Colorado, and has been
programming since 1972. He
enjoys cooking, hiking, music,
and spending time with his
family.

PROGRAM IN PYTHON - PART 7
automatically entered for us,
so we don't include that in the
list of fields in our insert
statement. Since we will be
using the field names, they can
be in any order, not just the
order they were created in. As
long as we know the names of
the fields, everything will work
correctly. The insert statement
for our recipe table entry
becomes

INSERT INTO Recipes (name,
serves, source) VALUES
(“Spanish Rice”,4,”Greg
Walters”)

Next we need to find out the
value that was assigned to the
pkID in the recipe table. We
can do this with a simple
command:

SELECT last_insert_rowid()

However, it doesn't just
come out as something we can
really use. We need to use a
series of statements like this:

sql = "SELECT
last_insert_rowid()"

cursor.execute(sql)

for x in cursor.execute(sql):
lastid = x[0]

Why is this? Well, when we
get data back from ASPW, it
comes back as a tuple. This is
something we haven't talked
about yet. The quick
explanation is that a tuple is (if
you look at the code above)
like a list, but it can't be
changed. Many people use
tuples rarely; others use them
often; it's up to you. The
bottom line is that we want to
use the first value returned. We
use the 'for' loop to get the
value into the tuple variable x.
Make sense? OK. Let's
continue...

Next, we would create the
insert statement for the
instructions:

sql = 'INSERT INTO
Instructions
(recipeID,instructions)
VALUES(%s,"Brown hamburger.
Stir in all other
ingredients. Bring to a
boil. Stir. Lower to simmer.
Cover and cook for 20
minutes or until all liquid
is absorbed.")' % lastid

cursor.execute(sql)

Notice that we are using the
variable substitution (%s) to

place the pkID of the recipe
(lastid) into the sql statement.
Finally, we need to put each
ingredient into the ingredient
table. I'll show you just one for
now:

sql = 'INSERT INTO
Ingredients
(recipeID,ingredients)
VALUES (%s,"1 cup parboiled
Rice (uncooked)")' % lastid

cursor.execute(sql)

It's not too hard to
understand at this point. Next
time it will get a bit more
complicated.

If you would like the full
source code, I've placed it on
my website. Go to
www.thedesignatedgeek.com
to download it.

Next time, we will use what
we've learned over the series
to create a menu-driven front
end for our recipe program - it
will allow viewing all recipes in
a list format, viewing a single
recipe, searching for a recipe,
and adding and deleting
recipes.

I suggest that you spend

some time reading up on SQL
programming. You'll be happy
you did.

full circle magazine #34 contents ^

HOW-TO Program In Python - Part 8

FCM#27-33 - Python Parts 1 - 7

GraphicsDev Internet M/media System

HDDCD/DVD USB Drive Laptop Wireless

W
ewill continue
programming our
recipe database
that we started in

Part 7. This will be a long one,
with a lot of code, so grab on
with all your might and don't let
go. But remember, keep your
hands and feet inside the car at
all times. We have already
created our database. Now we
want to display the contents,
add to it and delete from it. So
how do we do that? We will
start with an application that

runs in a terminal, so we need
to create a menu. We will also
create a class that will hold
our database routines. Let's
start with a stub of our
program shown above right.

Now we will layout our
menu. We do that so we can
stub our class. Our menu will
be a rather big loop that will
display a list of options that
the user can perform. We'll
use a while loop. Change the
menu routine to look like the
code shown below right.

Next we stub the menu with
an if|elif|else structure which
is shown at the top of the next
page.

Let's take a quick look at
our menu routine. We start off
by printing the prompts that
the user can perform. We set a
variable (loop) to True, and
then use the while function to
continue looping until loop =
False. We use the raw_input()
command to wait for the user
to select an option, and then

#!/usr/bin/python
#--
Cookbook.py
Created for Beginning Programming Using Python #8
and Full Circle Magazine
#--
import apsw
import string
import webbrowser

class Cookbook:

def Menu():
cbk = Cookbook() # Initialize the class

Menu()

def Menu():
cbk = Cookbook() # Initialize the class
loop = True
while loop == True:

print
'==='

print ' RECIPE DATABASE'
print

'==='
print ' 1 - Show All Recipes'
print ' 2 - Search for a recipe'
print ' 3 - Show a Recipe'
print ' 4 - Delete a recipe'
print ' 5 - Add a recipe'
print ' 6 - Print a recipe'
print ' 0 - Exit'
print

'==='
response = raw_input('Enter a selection -> ')

full circle magazine #34 contents ^

PROGRAM IN PYTHON - PART 8

our if routine to handle
whichever option the user
selected. Before we can run
this for a test, we need to
create a stub inside our class
for the __init__ routine:

def __init__(self):
pass

Now, save your program
where you saved the database
you created from the last time,
and run it. You should see
something like that shown
above right.

It should simply print the
menu over and over, until you

type “0”, and then print
“Goodbye” and exit. At this
point, we can now start stubs
of our routines in the Cookbook
class. We will need a routine
that will display all the
information out of the Recipes
data table, one that will allow
you to search for a recipe, one
that will show the data for a
single recipe from all three
tables, one that will delete a
recipe, one that will allow you
to add a recipe, and one that
will print the recipe to the
default printer. The
PrintAllRecipes routine doesn't
need a parameter other than
the (self) parameter, neither
does the SearchforRecipe nor

the EnterNew routines. The
PrintSingleRecipe,
DeleteRecipe and PrintOut
routines all need to know what
recipe to deal with, so they will
need to have a parameter that
we'll call “which”. Use the pass
command to finish each stub.
Under the Cookbook class,
create the routine stubs:

def PrintAllRecipes(self):
pass

def SearchForRecipe(self):
pass

def
PrintSingleRecipe(self,which)
:

pass
def DeleteRecipe(self,which):

pass
def EnterNew(self):

pass
def PrintOut(self,which):

pass

For a number of the menu

items, we will want to print out
all of the recipes from the
Recipe table – so the user can
pick from that list. These will
be options 1, 3, 4 and 6. So,
modify the menu routine for
those options, replacing the
pass command with
cbk.PrintAllRecipes(). Our
response check routine will
now look like the code at the
top of the next page.

One more thing to do is to
set up the __init__ routine.
Replace the stub with the
following lines:

def __init__(self):
global connection
global cursor
self.totalcount = 0
connection=apsw.Connection(

"cookbook.db3")
cursor=connection.cursor()

if response == '1': # Show all recipes
pass

elif response == '2': # Search for a recipe
pass

elif response == '3': # Show a single recipe
pass

elif response == '4': # Delete Recipe
pass

elif response == '5': # Add a recipe
pass

elif response == '6': # Print a recipe
pass

elif response == '0': # Exit the program
print 'Goodbye'
loop = False

else:
print 'Unrecognized command. Try again.'

/usr/bin/python -u
"/home/greg/python_examples/APSW/cookbook/cookbook_stub.py"
===

RECIPE DATABASE
===
1 - Show All Recipes
2 - Search for a recipe
3 - Show a Recipe
4 - Delete a recipe
5 - Add a recipe
6 - Print a recipe
0 - Exit
===
Enter a selection ->

full circle magazine #34 contents ^

PROGRAM IN PYTHON - PART 8

First we create two global
variables for our connection
and cursor. We can access
them from anywhere within the
cookbook class. Next, we
create a variable self.totalcount
which we use to count the
number of recipes. We'll be
using this variable later on.
Finally we create the
connection and the cursor.

The next step will be to flesh
out the PrintAllRecipes()
routine in the Cookbook class.
Since we have the global
variables for connection and
cursor, we don't need to re-
create them in each routine.

Next, we will want to do a
“pretty print” to the screen for
headers for our recipe list. We'll
use the “%s” formatting
command, and the left justify
command, to space out our
screen output. We want it to
look like this:

Item Name Serves Source

Finally, we need to create
our SQL statement, query the
database, and display the
results. Most of this was
covered in the article last time.

sql = 'SELECT * FROM

Recipes'
cntr = 0
for x in

cursor.execute(sql):
cntr += 1
print '%s %s %s %s'

%(str(x[0]).rjust(5),x[1].lju
st(30),x[2].ljust(20),x[3].lj
ust(30))

print '-------------'
self.totalcount = cntr

The cntr variable will count
the number of recipes we
display to the user. Now our
routine is done. Shown below is
the full code for the routine,
just in case you missed
something.

Notice that we are using the
tuple that is returned from the
cursor.execute routine from
ASPW. We are printing the pkID

as the item for each recipe.
This will allow us to select the
correct recipe later on. When
you run your program, you
should see the menu, and
when you select option 1, you'll
get what's shown at the top of
the next page.

That's what we wanted,
except if you are running the
app in Dr.Python or the like, the
program doesn't pause. Let's
add a pause until the user
presses a key so they can look
at the output for a second or
two. While we are at it, let's
print out the total number of
recipes from the variable we
set up a moment ago. Add to
the bottom of option 1 of the
menu:

if response == '1': # Show all recipes
cbk.PrintAllRecipes()

elif response == '2': # Search for a recipe
pass

elif response == '3': # Show a single recipe
cbk.PrintAllRecipes()

elif response == '4': # Delete Recipe
cbk.PrintAllRecipes()

elif response == '5': # Add a recipe
pass

elif response == '6': # Print a recipe
cbk.PrintAllRecipes()

elif response == '0': # Exit the program
print 'Goodbye'
loop = False

else:
print 'Unrecognized command. Try again.'

def PrintAllRecipes(self):
print '%s %s %s %s'

%('Item'.ljust(5),'Name'.ljust(30),'Serves'.ljust(20),
'Source'.ljust(30))

print '---------------------------------'
sql = 'SELECT * FROM Recipes'
cntr = 0
for x in cursor.execute(sql):

cntr += 1
print '%s %s %s %s'

%(str(x[0]).rjust(5),x[1].ljust(30),x[2].ljust(20),x[3
].ljust(30))

print '---------------------------------'
self.totalcount = cntr

full circle magazine #34 contents ^

PROGRAM IN PYTHON - PART 8

print 'Total Recipes - %s'
%cbk.totalcount

print '----------------------

-'

res = raw_input('Press A Key
-> ')

We'll skip option #2 (Search
for a recipe) for a moment, and
deal with #3 (Show a single
recipe). Let's deal with the
menu portion first. We'll show
the list of recipes, as for option
1, and then ask the user to
select one. To make sure we
don't get errors due to a bad

user input, we'll use the
Try|Except structure. We will
print the prompt to the user
(Select a recipe →), then, if
they enter a correct response,
we'll call the
PrintSingleRecipe() routine in
our Cookbook class with the
pkID from our Recipe table. If
the entry is not a number, it
will raise a ValueError
exception, which we handle
with the except ValueError:
catch shown right.

Next, we'll work on our
PrintSingleRecipe routine in the
Cookbook class. We start with

the connection and cursor
again, then create our SQL
statement. In this case, we use
'SELECT * FROM Recipes
WHERE pkID = %s” %
str(which)' where which is the
value we want to find. Then we
“pretty print” the output, again

from the tuple returned by
ASPW. In this case, we use x as
the gross variable, and then
each one with bracketed index
into the tuple. Since the table
layout is
pkID/name/servings/source, we
can use x[0],x[1],x[2] and x[3]
as the detail. Then, we want to
select everything from the
ingredients table where the
recipeID (our key into the
recipes data table) is equal to
the pkID we just used. We loop
through the tuple returned,
printing each ingredient, and
then finally we get the
instructions from the
instructions table – just like we
did for the ingredients table.
Finally, we wait for the user to
press a key so they can see the
recipe on the screen. The code
is shown on the next page.

Now, we have two routines

Enter a selection -> 1
Item Name Serves Source
--

1 Spanish Rice 4 Greg
2 Pickled Pepper-Onion Relish 9 half pints Complete Guide to Home Canning

--
===

RECIPE DATABASE
===
1 - Show All Recipes
2 - Search for a recipe
3 - Show a Recipe
4 - Delete a recipe
5 - Add a recipe
6 - Print a recipe
0 - Exit
===
Enter a selection ->

try:
res = int(raw_input('Select a Recipe -> '))
if res <= cbk.totalcount:

cbk.PrintSingleRecipe(res)
elif res == cbk.totalcount + 1:

print 'Back To Menu...'
else:

print 'Unrecognized command. Returning to menu.'
except ValueError:

print 'Not a number...back to menu.'

full circle magazine #34 contents ^

PROGRAM IN PYTHON - PART 8
out of the six finished. So, let's
deal with the search routine,
again starting with the menu.
Luckily this time, we just call
the search routine in the class,
so replace the pass command
with:

cbk.SearchForRecipe()

Now to flesh out our search
code. In the Cookbook class,
replace our stub for the
SearchForRecipe with the code
shown on the next page.

There's a lot going on there.
After we create our connection
and cursor, we display our
search menu. We are going to
give the user three ways to
search, and a way to exit the
routine. We can let the user
search by a word in the recipe
name, a word in the recipe
source, or a word in the
ingredient list. Because of this,
we can't just use the display
routine we just created, and
will need to create custom
printout routines. The first two
options use simple SELECT
statements with an added
twist. We are using the “like”
qualifier. If we were using a
query browser like SQLite

Database Browser, our like
statement uses a wildcard
character of “%”. So, to look
for a recipe containing “rice” in
the recipe name, our query
would be:

SELECT * FROM Recipes WHERE
name like '%rice%'

However, since the “%”
character is also a substitution
character in our strings, we
have to use %% in our text. To
make it worse, we are using
the substitution character to
insert the word the user is
searching for. Therefore, we
must make it '%%%s%%'.
Sorry if this is as clear as mud.
The third query is called a Join
statement. Let's look at it a bit
closer:

sql = "SELECT
r.pkid,r.name,r.servings,r.so
urce,i.ingredients FROM
Recipes r Left Join
ingredients i on (r.pkid =
i.recipeid) WHERE
i.ingredients like '%%%s%%'
GROUP BY r.pkid" %response

We are selecting everything
from the recipe table, and the
ingredients from the
ingredients table, joining or
relating the ingredient table

ON the recipeID being equal to
the pkID in the recipe table,
then searching for our
ingredient using the like
statement, and, finally,
grouping the result by the pkID
in the recipe table to keep
duplicates from being shown. If
you remember, we have
peppers twice in the second
recipe (Onion and pepper
relish), one green and one red.

That could create confusion in
our user's mind. Our menu uses

searchin =
raw_input('Enter Search Type
-> ')

if searchin != '4':

which says: if searchin (the
value the user entered) is NOT
equal to 4 then do the options,
if it is 4, then don't do

def PrintSingleRecipe(self,which):
sql = 'SELECT * FROM Recipes WHERE pkID = %s' %

str(which)
print

'~~'
for x in cursor.execute(sql):

recipeid =x[0]
print "Title: " + x[1]
print "Serves: " + x[2]
print "Source: " + x[3]

print
'~~'

sql = 'SELECT * FROM Ingredients WHERE RecipeID
= %s' % recipeid

print 'Ingredient List:'
for x in cursor.execute(sql):

print x[1]
print ''
print 'Instructions:'
sql = 'SELECT * FROM Instructions WHERE RecipeID

= %s' % recipeid
for x in cursor.execute(sql):

print x[1]
print

'~~'
resp = raw_input('Press A Key -> ')

full circle magazine #34 contents ^

def SearchForRecipe(self):
print the search menu
print '-------------------------------'
print ' Search in'
print '-------------------------------'
print ' 1 - Recipe Name'
print ' 2 - Recipe Source'
print ' 3 - Ingredients'
print ' 4 - Exit'
searchin = raw_input('Enter Search Type -> ')
if searchin != '4':

if searchin == '1':
search = 'Recipe Name'

elif searchin == '2':
search = 'Recipe Source'

elif searchin == '3':
search = 'Ingredients'

parm = searchin
response = raw_input('Search for what in %s (blank to exit) -> ' % search)
if parm == '1': # Recipe Name

sql = "SELECT pkid,name,source,servings FROM Recipes WHERE name like '%%%s%%'" %response
elif parm == '2': # Recipe Source

sql = "SELECT pkid,name,source,servings FROM Recipes WHERE source like '%%%s%%'" %response
elif parm == '3': # Ingredients

sql = "SELECT r.pkid,r.name,r.servings,r.source,i.ingredients FROM Recipes r Left Join ingredients i
on (r.pkid = i.recipeid) WHERE i.ingredients like '%%%s%%' GROUP BY r.pkid" %response

try:
if parm == '3':

print '%s %s %s %s %s'
%('Item'.ljust(5),'Name'.ljust(30),'Serves'.ljust(20),'Source'.ljust(30),'Ingredient'.ljust(30))

print '--'
else:

print '%s %s %s %s' %('Item'.ljust(5),'Name'.ljust(30),'Serves'.ljust(20),'Source'.ljust(30))
print '--'

for x in cursor.execute(sql):
if parm == '3':

print '%s %s %s %s %s'
%(str(x[0]).rjust(5),x[1].ljust(30),x[2].ljust(20),x[3].ljust(30),x[4].ljust(30))

else:
print '%s %s %s %s' %(str(x[0]).rjust(5),x[1].ljust(30),x[3].ljust(20),x[2].ljust(30))

except:
print 'An Error Occured'

print '--'
inkey = raw_input('Press a key')

full circle magazine #34 contents ^

PROGRAM IN PYTHON - PART 8
anything, just fall through.
Notice that I used “!=” as Not
Equal To instead of “<>”.
Either will work under Python
2.x. However, in Python 3.x, it
will give a syntax error. We'll
cover more Python 3.x
changes in a future article. For
now, start using “!=” to make
your life easier to move to
Python 3.x in the future.
Finally, we “pretty print” again
our output. Let's look at what
the user will see, shown right.

You can see how nicely the
program prints the output.
Now, the user can go back to
the menu and use option #3 to
print whichever recipe they
want to see. Next we will add
recipes to our database. Again,
we just have to add one line to
our menu routine, the call to
the EnterNew routine:

cbk.EnterNew()

The code that needs to
replace the stub in the
Cookbook class for EnterNew()
is at:
http://pastebin.com/f1d868e63.

We start by defining a list
named “ings” – which stands

Enter a selection -> 2

Search in

1 - Recipe Name
2 - Recipe Source
3 - Ingredients
4 - Exit
Enter Search Type -> 1
Search for what in Recipe Name (blank to exit) -> rice
Item Name Serves Source
--

1 Spanish Rice 4 Greg
--
Press a key

Easy enough. Now for the ingredient search...

Enter a selection -> 2

Search in

1 - Recipe Name
2 - Recipe Source
3 - Ingredients
4 - Exit
Enter Search Type -> 3
Search for what in Ingredients (blank to exit) -> onion
Item Name Serves Source Ingredient

--
1 Spanish Rice 4 Greg 1 small
Onion chopped
2 Pickled Pepper-Onion Relish 9 half pints Complete Guide to Home Canning 6 cups
finely chopped Onions
--
Press a key

full circle magazine #34 contents ^

PROGRAM IN PYTHON - PART 8
for ingredients. We then ask
the user to enter the title,
source, and servings. We then
enter a loop, asking for each
ingredient, appending to the
ing list. If the user enters 0, we
exit the loop and continue on
asking for the instructions. We
then show the recipe contents
and ask the user to verify
before saving the data. We use
INSERT INTO statements, like
we did last time, and return to
the menu. One thing we have
to be careful of is the single
quote in our entries. USUALLY,
this won't be a problem in the
ingredient list or the
instructions, but in our title or
source fields, it could come up.
We need to add an escape
character to any single quotes.
We do this with the
string.replace routine, which is
why we imported the string
library. In the menu routine,
put the code shown above
right under option #4.

Then, in the Cookbook class,
use the code shown below
right for the DeleteRecipe()
routine.

Quickly, we'll go through the
delete routine. We first ask the

user which recipe to delete
(back in the menu), and pass
that pkID number into our
delete routine. Next, we ask
the user 'are they SURE' they
want to delete the recipe. If the
response is “Y”
(string.upper(resp) == 'Y'),
then we create the sql delete
statements. Notice that this
time we have to delete records
from all three tables. We
certainly could just delete the
record from the recipes table,
but then we'd have orphan
records in the other two, and
that wouldn't be good. When
we delete the record from the
recipe table, we use the pkID
field. In the other two tables,
we use the recipeID field.

Finally, we will deal with the
routine to print the recipes.
We'll be creating a VERY simple
HTML file, opening the default
browser and allowing them to
print from there. This is why we
are importing the webbrowser
library. In the menu routine for
option #6, insert the code
shown at the top of the next
page.

Again, we display a list of all
the recipes, and allow them to

select the one that they wish to
print. We call the PrintOut
routine in the Cookbook class.
That code is shown at the top
right of the next page.

We start with the fi =

open([filename],'w') command
which creates the file. We then
pull the information from the
recipe table, and write it to the
file with the fi.write command.
We use the <H1></H1>
header 1 tag for the title, the

cbk.PrintAllRecipes()
print '0 - Return To Menu'
try:

res = int(raw_input('Select a Recipe to DELETE
or 0 to exit -> '))

if res != 0:
cbk.DeleteRecipe(res)

elif res == '0':
print 'Back To Menu...'

else:
print 'Unrecognized command. Returning to

menu.'
except ValueError:

print 'Not a number...back to menu.'

def DeleteRecipe(self,which):
resp = raw_input('Are You SURE you want to

Delete this record? (Y/n) -> ')
if string.upper(resp) == 'Y':

sql = "DELETE FROM Recipes WHERE pkID = %s"
% str(which)

cursor.execute(sql)
sql = "DELETE FROM Instructions WHERE

recipeID = %s" % str(which)
cursor.execute(sql)
sql = "DELETE FROM Ingredients WHERE

recipeID = %s" % str(which)
cursor.execute(sql)
print "Recipe information DELETED"
resp = raw_input('Press A Key -> ')

else:
print "Delete Aborted - Returning to menu"

full circle magazine #34 contents ^

is owner of
, a

consulting company in Aurora,
Colorado, and has been
programming since 1972. He
enjoys cooking, hiking, music,
and spending time with his
family.

PROGRAM IN PYTHON - PART 8
<H2> tag for servings and
source. We then use the
 list tags for our
ingredient list, and then write
the instructions. Other than
that it's simple queries we've
already learned. Finally, we
close the file with the fi.close()
command, and use
webbrowser.open([filename])
with the file we just created.
The user can then print from
their web browser – if required.

This was our
biggest application to date. I've
posted the full source code
(and the sample database if
you missed last month) on my
website. If you don't want to
type it all in or have any
problems, then hop over to my
web site,
www.thedesignatedgeek.com
to get the code.

cbk.PrintAllRecipes()
print '0 - Return To Menu'
try:

res = int(raw_input('Select a Recipe to DELETE or 0 to exit -> '))
if res != 0:

cbk.PrintOut(res)
elif res == '0':

print 'Back To Menu...'
else:

print 'Unrecognized command. Returning to menu.'
except ValueError:

print 'Not a number...back to menu.'

def PrintOut(self,which):
fi = open('recipeprint.html','w')
sql = "SELECT * FROM Recipes WHERE pkID = %s" % which
for x in cursor.execute(sql):

RecipeName = x[1]
RecipeSource = x[3]
RecipeServings = x[2]

fi.write("<H1>%s</H1>" % RecipeName)
fi.write("<H2>Source: %s</H2>" % RecipeSource)
fi.write("<H2>Servings: %s</H2>" % RecipeServings)
fi.write("<H3> Ingredient List: </H3>")
sql = 'SELECT * FROM Ingredients WHERE RecipeID = %s' % which
for x in cursor.execute(sql):

fi.write("%s" % x[1])
fi.write("<H3>Instructions:</H3>")
sql = 'SELECT * FROM Instructions WHERE RecipeID = %s' % which
for x in cursor.execute(sql):

fi.write(x[1])
fi.close()
webbrowser.open('recipeprint.html')
print "Done"

