
THE INDEPENDENT MAGAZINE FOR THE UBUNTU LINUX COMMUNITY

INKSCAPE SERIES SPECIAL EDITION Vol 8

INKSCAPEINKSCAPE
Volume Eight Parts 50 - 57

Full Circle

Full Circle Magazine is neither affiliated, with nor endorsed by, Canonical Ltd.

full circle magazine #1 1 0 30 contents ^

HHOOWW--TTOO
Written by Mark Crutch IInnkkssccaappee -- PPaarr tt 5500

First, an apology. Last month I
suggested you could get color
from a black shadow by using the
Fixed Offset column of the Color
Matrix filter, and demonstrated
using the Source Alpha input.
Unfortunately a change was
introduced into Inkscape 0.91
which prevents fixed offsets of the
color components working on a
Source Alpha input
(https://bugs.launchpad.net/inksca
pe/+bug/897236). It does work in
version 0.48, as well as in Firefox
and other SVG renderers.
Apologies to anyone who wasted
their time trying to follow my
instructions on 0.91, and thanks to
Moini in the Inkscape Forum for
bringing this issue to my attention.
Now, on with the show…

Another type of drop shadow
effect that you'll see from

time to time is the “stacked
shadow”. This is created by
stacking several hard-edged copies
of your original object on top of
each other, with each of them
having a different fill color.

The easy way to create this

effect is just to duplicate your
original objects, move them a
little, change their fill color, and re-
stack them into the correct order.
With three objects, the middle one
having a white fill and no stroke, it
was a matter of moments to
produce this:

Not a bad start, but what
happens when you need to change
the text? You would have to alter it
for all three objects which triples
your chances of making a mistake.
Better to use unset fills with
clones (see part 30), which can get
you to the same result but with
only the parent object to edit in
order for your changes to
propagate through the whole
stack.

Even with clones, however,
you're still working with three
objects. Grouping them lets you
move or transform them all as one,

but you then have the extra
burden of having to enter the
group and track down the original
object in order to change the text.
As you might imagine, filters offer
a solution to all these problems.

With the few filter primitives
you've learnt in the previous two
instalments, you already know
enough to create a stacked shadow
effect using the fill color at the
top, a white copy of the source
image below that, and a black copy
right at the bottom. I t's really just
the same as a simple hard-edged
drop shadow (from part 48) with a
re-colored drop shadow (part 49)
sandwiched in the middle. Let's
look at it in graph form first,
starting with a basic hard-edged
black drop shadow:

Pretty simple, right? Now let's
look at our hard-edged white drop
shadow. You'll notice it's
essentially the same graph, but
with the addition of a Color Matrix
primitive to convert the black
shadow to a white one (I've used a
black background for the final
output box, so that the white
shadow is visible) :

In order to get a white output
from the color matrix, each R, G
and B row must evaluate to at
least 1.0 (which is mapped to 255
in RGB).Our input values are all
zero, so no amount of
multiplication will get the result
we want. Instead we have to put a
value of 1.0, or greater, into the
fixed offset column for the first
three rows:

full circle magazine #1 1 0 31 contents ^

HOWTO - INKSCAPE

Now that we know how to

create the constituent parts of our

filter, we just need to combine

them into one. In this case, it's a

simple matter of merging them in

the right order – black shadow

first, then white, then the source

graphic. The final graph looks like

this:

As you can see, our final filter

requires four filter primitives – two

Offsets, one Color Matrix and a

Merge. It also has two connections

to the Source Alpha input, and one

to the Source Graphic input. Let's

take a look at the final filter design

in Inkscape:

If you follow each line in the

image you'll see that it's the same

connected set of objects as in the

graph view. Unfortunately,

Inkscape's UI manages to make it

seem more complex, largely due to

the need for lines to cross in order

for each “branch” of the filter to

come together at the Merge

primitive. Now imagine the same

filter design, but with even more

shadows being stacked: despite

each shadow being a separate

linear graph feeding into a

common Merge, Inkscape's UI

quickly becomes filled with a

confusing spaghetti of crossing

lines. Whenever you're faced with

such a complex mess, try sketching

out the filter primitives and their

connections in graph form to see if

it becomes more understandable.

There's a bit of a problem with

our stacked shadows filter: it looks

distinctly different when placed on

a white background compared with

a colored background. In the

former case, the white shadow

vanishes into the background,

giving the appearance of a

disconnected black shadow, but as

soon as you put it on any other

background, the white layer stands

out.

In some cases you may want the

white layer to be visible, but for

others you would want that part of

the output to be transparent. If

you were building the stacked

shadows from normal SVG objects,

you could use a clipping path to

achieve this effect (see part 1 3) ,

but clipping paths aren't available

as filter primitives. Instead there is

a primitive called “Composite”

which allows you to combine two

inputs in myriad ways, including a

couple that have a similar effect to

a clipping path.

The Composite primitive uses

the alpha values of the pixels in

the input images to determine

what the output pixel should be,

using the methods described by

Thomas Porter and Tom Duff back

in the 1 980s, collectively referred

to as the Porter-Duff blending

modes. These blending modes are

selected from the Operator pop-up

in the filter editor:

Default – This omits the operator

from the filter primitive in the

underlying XML file. Per the SVG

Filter Effects spec, this causes

Inkscape to behave as though a

value of “over” had been supplied.

For the sake of clarity, I

recommend never using this

option, and always explicitly

full circle magazine #1 1 0 32 contents ^

HOWTO - INKSCAPE
selecting the “Over” option, if

that's what you want.

Over – The two images are laid on

top of each other, with the top

input appearing above the lower

input. This is exactly the same as

using the Merge primitive with two

inputs, except that the order of

the inputs is reversed.

In – Only those parts of the top

image that are “inside” the lower

image will appear in the output.

This has a similar effect to a

clipping path.

Out – Only those parts of the top

image that are “outside” the lower

image will appear in the output.

This has a similar effect to an

“inverse” clipping path.

Atop – The output consists of the

lower input image, plus all the

parts of the upper input image

that are inside the lower image.

XOR – Performs an eXclusive OR

operation between the RGB values

of each of the pixels in the two

input images. The effect is for the

output image to include any non-

overlapping parts of the input

images.

Arithmetic – This is not one of the

Porter-Duff blending modes, but

rather is an additional mode that is

present in the SVG spec. It will be

described in a little more detail

later.

Note that the filter UI provides

four sliders, but even though these

are only used for the Arithmetic

operator, they nevertheless remain

visible, though disabled, when any

of the other operators is used.

The descriptions above are

broadly correct, but some

subtleties slip in when the input

images contain alpha values other

than 0 and 255. If you want to use

this primitive for clipping, it's

therefore advisable to ensure that

your input images don't contain

intermediate values. The best way

to do this is with the Component

Transfer primitive, which gained a

UI in Inkscape 0.91 and will be

described in a future article.

Sticking with the filters I 've already

covered, you can also use the Color

Matrix primitive to stretch and

offset the range of possible values

to achieve a similar result. For

example, this matrix will clamp

alpha values such that those below

1 28 are converted to 0, and those

above or equal are converted to

255.

As with so many things in SVG,

that's a lot of words to describe

something that's better shown as

an image. Here are the 5 Porter-

Duff blending modes when applied

to a couple of squares, first with no

transparency, then with the

opacity reduced to 75%. Note that

the black outlines have been

added afterwards to clarify which

parts of the images remain –

they're not present in the pure

filtered output.

Let's get back to our stacked

shadow and take a look at how this

filter can help to cut away the

white layer. Consider just a small

part of the output – a single letter.

I 've removed the Source Graphic so

we're just seeing the two offset

shadows:

We need to keep the black part

that's visible, but remove all the

white content, leaving it

transparent. In other words, we

want to keep the part of the black

layer that is outside the white

layer. Clearly this is a job for the

Composite primitive's “Out”

blending mode. Because the

Composite filter cares about only

the opacity of the input sources,

not their color, we can omit the

full circle magazine #1 1 0 33 contents ^

Mark uses Inkscape to create three
webcomics, 'The Greys' , 'Monsters,
Inked' and 'Elvie' , which can all be
found at
http://www.peppertop.com/

HOWTO - INKSCAPE
Color Matrix primitive, giving us

this filter chain and result:

All we need to do now is to add

a final block to the chain to merge

this output with our original

source graphic once more, giving

us the final result we were looking

for – a stacked shadow with a

transparent intermediate layer

that works on any background (see

top middle).

There's one last thing to

describe before concluding this

month's article: that “Arithmetic”

mode of the Composite filter, and

its four sliders (K1 to K4). With this

mode, each channel (R, G, B, A) of

each pixel of the output image is

calculated from the corresponding

pixel channel of the input images

(i1 and i2) , weighted by the K1 to

K4 values using the following

formula:

result = (K1×i1×i2) + (K2×i1)
+ (K3×i2) + K4

Breaking this down, you can see

that K4 isn't multiplied by

anything, so it just represents a

fixed offset. K2 and K3 are

multiplied by i1 and i2 respectively,

so they adjust the amount of each

input that goes into the output. K1

is multiplied by both i1 and i2, so

acts to stretch the range of the

output values.

This mode can be used to

combine the output from two

other filter primitives, allowing you

to control the proportions of each

input. The SVG spec suggests it

might be useful for overlaying the

output from some lighting effect

primitives (not yet covered in this

series) with texture data from

another primitive or image source,

but it can be useful whenever you

want to mix two images together

with some control over the

strength of each one.

INKSCAPE FORUM

The Inkscape Board is forming a committee to organise the

creation of an official Inkscape forum. The main existing

community forum (inkscapeforum.com) has become a target for

spammers, and the owner of the domain has not been responsive

to any emails or messages. The chair of the committee will be

Brynn, a long standing contributor to the old site, who maintains a

separate forum at www.inkscapecommunity.com. The major

contributors to the forum are moving to her site, at least as an

interim measure. Until a final decision is made about a new forum,

it is strongly recommended that support posts or requests are

made at Brynn's site, rather than at the old forum.

http://www.peppertop.com
http://inkscapeforum.com
http://www.inkscapecommunity.com

full circle magazine #1 1 1 27 contents ^

HH OOWW--TTOO
Written by Mark Crutch II nn kkssccaa ppee -- PPaa rrtt 5511

I t appears that last month's

announcement about forums was

premature. Suffice to say that

politics and personalities have

been at loggerheads in the world

of Inkscape support forums, but

things have since calmed down.

So I 'll stick to pure facts: Both

the inkscapeforum.com and

inkscapecommunity.com forums

continue to operate, each with a

different subset of users (and

some degree of overlap). Support

requests posted to either will

generally elicit a response, and

there's no need for normal

Inkscape users to concern

themselves with the behind-the-

scenes shenanigans. None of this

has any impact on the

development of Inkscape itself. If

and when there is any more

concrete information about an

official forum, I ’ll write about it,

but until then I 'll be keeping forum

politics well out of this column!

N ow, where were we...? Oh yes,

filters. Let's return to the

single-colored drop shadows of

Part 49 to show you a simpler way

to create the same effect.

Previously, I introduced you to the

Color Matrix primitive as a means

of converting one color to another,

but when all you need to do is to

introduce a specific fixed color into

your filter chain, it's usually easier

to use the Flood primitive.

As you might have guessed

from the name, the Flood primitive

floods an area with color. You may

now be thinking along the lines of

the bucket tool in Inkscape or

other graphics programs, which

typically floods an area by working

outwards until it hits a differently

colored boundary line. But there's

no such finesse here; the flood

primitive simply fills the whole of

the “filter effects region” with a

flat color. The filter effects region

is the rectangle defined by the

Filter General Settings tab (see

part 48), and is typically larger than

the bounding box of your selected

objects.

Starting again with some simple

text, create a filter and add the

Flood primitive. With the primitive

selected, use the controls at the

bottom of the Filter Effects dialog

to choose a color and opacity, and

you should get a result something

like this (note that it doesn't

matter what the input of the Flood

primitive is connected to, as it has

no effect on the output):

Not terribly inspiring, is it? So

the question now is how to turn

this big blue rectangle into a softly

shaped drop shadow. If you

followed last month's tutorial,

you'll know that the Composite

filter (used in “In” mode) can be

used to crop the blue rectangle

into the shape of our text.

It's not very common that you'll

want the output from your filter to

be strictly rectangular, rather than

following the shapes and curves of

your selected objects. So

whenever you see a Flood

primitive in a filter chain, there's a

good chance that there will be a

Composite filter following along

shortly afterwards to trim it to

shape.

Now that we've got a colored

version of the text, it's a

straightforward matter to offset

and blur it, before merging it with

the Source Graphic – you should be

adept at those steps by now, so I 'll

spare you a detailed description

and instead present the result, a

graph version of the chain, and a

screenshot from Inkscape.

Whilst Flood provides you with

a rectangle of a single color, the

Turbulence primitive gives you a

rectangle filled with a chaotic mix

of colors. It's not strictly random,

in the mathematical sense, as the

output is well defined and

repeatable (meaning that your

full circle magazine #1 1 1 28 contents ^

HOWTO - INKSCAPE

filters should look the same in any

renderer – although in reality that

may not be the case), but, in the

colloquial sense, it's this primitive

that you should head for if you

want to add a degree of

randomness or noise to your

image. It has two modes: Fractal

Noise and Turbulence. The

difference between them is that

the latter has more “troughs” in

the output, where the background

shows through, giving the

appearance of joined up lines

running throughout the output,

whilst the former has more of a

cloudy appearance.

Whichever mode you choose,

the rest of the controls remain the

same. The Base Frequency sliders

control how “dense” the noise

appears – low values give slow,

smooth transitions, whereas higher

values result in transitions that

change more rapidly, making the

output more reminiscent of “snow”

on an old un-tuned TV set. The

horizontal and vertical frequencies

are usually the same, but can be

changed independently by

toggling the Link button to the

right. The Octaves slider controls

how detailed or complex the noise

appears; taking this much beyond

about 4 is rarely worthwhile as the

increased detail is too small to see,

and it imposes an extra load on the

processor. Finally, the Seed value

can be used to prime the pseudo-

random number generator at the

core of the filter to give you a

slightly different output pattern

without changing the other

parameters.

full circle magazine #1 1 1 29 contents ^

HOWTO - INKSCAPE
The following images show the

effect of varying the Base

Frequency and the Octaves sliders,

for both the Fractal Noise and

Turbulence modes.

You'll notice that the images

are fairly pastel in tone. This is

because all four channels (R, G, B,

A) are calculated independently –

each pixel actually consists of a

combination of four pseudo-

random numbers. The value of the

Alpha channel will override all the

others, so even if you happen to

have a strong color from the RGB

components, a low Alpha can

knock it back to a translucent

shadow of its former self.

You can use a Color Matrix to

extract a single channel, or to

stretch the output to make it more

vibrant. In this example, I 've done

the latter, as well as wiping out the

Alpha channel entirely and

replacing it with a fixed value of 1

(fully opaque). The cyan color of

the original text doesn't show

through at all in this case (any cyan

in the result comes purely from the

Turbulence filter) , but I have used a

black background to make the

colors stand out even more.

To extract a single channel from

the output, zero everything in your

Color Matrix, and then populate

just one of the first four columns,

depending on what you want to

get out. For example, setting a

value of 1 .00 in every field in the

third column would take the 0-255

values in your Blue channel and

map them to RGBA in the output. A

Blue value of 63 on the input

would produce (63, 63, 63, 63) – a

translucent gray color – as an

output. You might want to take the

Alpha channel out of the equation

by setting a value of 1 .00 in the

bottom right corner (the Fixed

Value column for the Alpha

output). In this example, I 've used

the Green channel to set only the

Alpha of the output, and stretched

the values a bit by using 3.00

rather than 1 .00. This gives an

image that runs from opaque black

to transparent black, so, by

Compositing it (to clip it to shape)

and then Merging it with the cyan

Source Graphic, it's easy to create

an “electric” or “plasma” effect.

You could also bring a Flood

primitive into a chain like that to

ensure that your result has the

right color in the filter, regardless

of the color of the object it's

applied to.

Don't forget that the Base

Frequency controls can be un-

linked. By keeping the values close

to each other, you can introduce a

slight stretching or bias into the

patterns, whilst separating them

by some distance can result in

almost horizontal or vertical lines

appearing. Here's the previous

filter, but with the horizontal Base

Frequency set quite high, and the

vertical Base Frequency at zero –

the result isn't what you might

usually think of as “turbulent”, but

can be a useful addition to your

filter arsenal nonetheless.

By now you should be starting

full circle magazine #1 1 1 30 contents ^

Mark uses Inkscape to create three
webcomics, 'The Greys' , 'Monsters,
Inked' and 'Elvie' , which can all be
found at
http://www.peppertop.com/

HOWTO - INKSCAPE
to appreciate the power and

flexibility of filters. By combining a

few primitives in various ways, you

can quickly create complex results.

Throw in a little pseudo-random

chaos and you're well on your way

to everything from clouds to

marble, whilst Flood primitives can

ensure that the important colors in

your filter are independent of the

objects they're applied to.

One common theme between

Flood and Turbulence is that they

fill the filter region entirely,

usually requiring a Composite

operation to trim them to shape.

Next month, we'll look at the last

of these “fill” primitives –

uncovering limitations in Inkscape

along the way – then progress on

to other ways to change their

shape.

http://www.peppertop.com

full circle magazine #1 1 2 26 contents ^

HH OOWW--TTOO
Written by Mark Crutch II nn kkssccaa ppee -- PPaa rrtt 5522

Last time, we looked at Flood

Fill and Turbulence – a pair of

primitives that can be used to fill

the filter area with, respectively, a

flat color or a pseudo-random

cloud of colors. But there's a

universe of other fills you might

like to use, from stripes to polka

dots, flowers to butterflies. To

cater for such infinite possibilities,

the SVG standard provides a way

to pull another image into your

filter chain, using the Image

primitive. This allows you to not

only use bitmap images, but can

even reference other parts of your

SVG file to let you pull your own

creations into the filter chain.

There's just one little problem: the

Inkscape implementation is well

and truly broken.

Let's start with the bit that

does work, at least to some

degree: importing an external

bitmap image into your filter chain.

As usual, we'll begin with a bit of

text as the object to which we'll

apply the filter. You can, of course,

use any type of object, but I find

that text gives me a quick and easy

way to see how a filter will look

when applied to a complex shape,

rather than using just a simple

rectangle or circle.

Create a filter on the test

object using one of the methods

described in Part 48, and, if

necessary, remove any existing

filter primitives. Now add a single

“Image” primitive to the filter

chain, and take a look at its

minimal controls at the bottom of

the dialog. The “Source of Image”

field will be used to hold the path

and filename of an external image

file, or the XML id of another

element in your image. For now,

you should choose an external

bitmap image by clicking on the

“Image File” button and picking

one from your hard drive. We'll use

our tried and tested Mona Lisa

image, giving us the following

output (unfiltered text on the left,

filtered on the right) when the

filter is created in Inkscape 0.48

(bottom left) .

Now you don't need to be an

expert in renaissance art to notice

that the image has been distorted

somewhat. Now the same filter

created in 0.91 (bottom right) .

Well, we've lost the distorted

aspect ratio, but it doesn't exactly

fill the filter area – although we

can do something about that, as

we'll see shortly. This change in

behaviour could potentially mean

that drawings created in 0.48 may

not appear the same in 0.91 if they

make use of this filter primitive.

In 0.48, you're stuck with the

default position and size of the

image – i.e. stretched to fill the

bounding box of the object. The

official Inkscape manual makes it

sound as though you can at least

set the position and size of the

image within the filter by using the

XML editor, but, despite many

attempts, I haven't been able to

achieve this. To be fair, the manual

does state that the

implementation in Inkscape

“doesn't correctly position images”

– though that seems to be

something of an understatement

based on my own tests.

With 0.91 , things fare a little

better – though you'll still have to

make your way to the XML editor

to change the parameters, as

they're still not reflected in the

full circle magazine #1 1 2 27 contents ^

HOWTO - INKSCAPE
GUI. Dig out Part 31 of this series if

you need a refresher on how to

use the XML editor. The XML

element you'll need to modify is

the <svg:feImage> which is inside

an <svg:filter> in the <svg:defs>

section of the file. You can add 'x' ,

'y' , 'width' , and 'height' attributes,

although, in my tests, none of

them took effect until I also added

a 'preserveAspectRatio' attribute.

In subsequent tests, once such an

attribute was already present, I

had to change it to a different

value and back again for changes

in the other attributes to be

reflected in Inkscape's canvas.

Changing it to an invalid value and

back does the trick, so you can just

add a single letter to the end of

the existing value, click “Set”,

remove the letter, then click “Set”

again.

So just what is a valid value for

preserveAspectRatio? A good

starting point is the word “none” -

that will cause Inkscape to ignore

the aspect ratio of the original

image, and stretch it to fill the

bounding box of the object,

resulting in a similar appearance as

with version 0.48. But there are

other options – lots of them, all

similarly and confusingly named!

They all start with a lowercase 'x'

and are followed immediately by

'Min' , 'Mid' or 'Max' (which, for the

x direction, basically means left

aligned, centered or right aligned),

then followed immediately by an

uppercase 'Y' and another 'Min' ,

'Mid' or 'Max' (top, middle or

bottom aligned), followed by a

space and an optional keyword of

'meet' (scale the image so that it's

all visible) or 'slice' (scale the

image to fill the bounding box,

whilst preserving the aspect ratio,

but hide any parts that extend

beyond the bounding box – i.e. just

show a slice of the image).

Confusing, isn't it? Perhaps some

examples (below) would help.

No, I don't know why the SVG

working group went for the

confusingly similar 'Min' and 'Mid' ,

nor why 'x' is lowercase whilst 'Y' is

uppercase, nor why they chose the

words 'meet' and 'slice' rather than

'scale' and 'crop'. I do know,

however, that my examples are just

the tip of the iceberg: there are 1 9

possible combinations, without

considering the aforementioned

'x' , 'y' , 'width' and 'height' , which

can have a dramatic effect on what

actually appears in your filter.

Until Inkscape gains a UI to

make some sense of this madness,

I recommend leaving the advanced

options of this filter to the experts.

But if you do want your image to

full circle magazine #1 1 2 28 contents ^

HOWTO - INKSCAPE
be distorted to fit the bounding

box, per 0.48, you will have to take

a deep breath, roll up your sleeves,

and wade into the XML editor to

deliver a swift dose of

preserveAspectRatio=“none”.

There's one last thing worth

noting about the Image primitive,

when used with external images.

By default, Inkscape will put the

entire path to your image into the

filter UI . In order to keep your

drawings more portable I strongly

recommend keeping any required

images in the same folder as your

drawing, and then manually editing

the entry in the filter settings to

remove the path, leaving just the

filename. You might consider

embedding your image into your

document, rather than keeping it

in an external file, but read on

The Image primitive should

have one more trick up its sleeve.

but, yet again, it's broken. It's

possible to select an object (or

group) in your Inkscape image and

then click the “Selected SVG

Element” – at which point the

Source of Image box will populate

with the ID of the element. In this

way, it should be possible to pull

any other SVG element into your

filter chain… except that it doesn't

work. It does appear to function in

0.48, in that a rasterised version of

the element is pulled in and

stretched to fill the bounding box,

but in 0.91 even that limited ability

seems to have vanished.

So there you have the Image

primitive – a filter that promises so

much, but delivers so little. The

useful parts that work in 0.48 are

broken in 0.91 , whilst the useful

parts from 0.91 require you to

wade into the XML editor.

Meanwhile, the pitiful UI sits back,

laughing at your efforts to attempt

something as audacious as setting

the position of your image within

the bounding box. Let's hope that

UI gains a little flesh in a future

release, and that the ability to use

SVG elements makes a welcome

return.

That concludes our look at the

“fill” primitives in Inkscape. The

SVG spec, though, has one other –

“Tile” – which lets you feed in the

output from another primitive to

be repeated (“tiled”) over the

whole of the filter region. In order

for this to work, the incoming

primitive needs to have a filter

region that is smaller than the one

it's going to be tiled into; but, as

Inkscape uses a single filter region

definition for the entire filter

chain, even if this primitive were to

be implemented, it would have no

practical effect.

It hardly seems fair to have

wasted your reading time with a

description of one poorly

implemented filter, and another

that hasn't been implemented at

all, so I ' ll finish this instalment by

adding another useful primitive to

your toolbox: Morphology.

Despite its fancy sounding

name, this is a very simple filter: all

it does is makes things thicker or

thinner. And it does so with the

minimum of fuss: there's just a

drop-down to select between

“erode” (make things thinner) and

“dilate” (make things thicker) , and

a pair of optionally linked “radius”

sliders to set the amount of

erosion or dilation that will take

place. Let's see this filter in action

– in each case the first text object

is unfiltered, and the second is

filtered as described, with a radius

of 2.5.

These filters are particularly

useful when used with the

Composite primitive, often in “In”

or “Out” modes. In the following

example, I 've used a Flood filter to

create a translucent white fill, then

used a Composite “In” to trim it to

the size of my eroded text. A little

Gaussian Blur and Offset later, and

you've got a filter that gives a 3D

appearance to your text.

full circle magazine #1 1 2 29 contents ^

Mark uses Inkscape to create three
webcomics, 'The Greys' , 'Monsters,
Inked' and 'Elvie' , which can all be
found at
http://www.peppertop.com/

HOWTO - INKSCAPE

“Out” can work well with

dilation, to punch out the center of

the dilated image. As a simple

case, consider a Morphology

primitive that dilates the source,

then a Composite Out that leaves

only those parts of the image that

are outside the original source

object. What you're left with is an

outline of your object, with a

transparent middle.

Now, rather than punching out

the source object, what if you

punch out another dilated version,

such that you're removing a small

dilation from the core of a large

dilation. Merge the original object

back in, and you have an outline

that surrounds the original, at a

distance set by the smaller dilation

with a thickness equal to the

difference between the inner and

outer dilations (you may need to

increase the size of the filter

region to avoid the result being

cropped).

Finally, how about taking the

previous idea and stacking it up a

little further. You can have several

outlines, all at different distances

from the original object, then just

merge everything together at the

end. Things start to get a little

complex as you add more outlines,

because you're juggling a pair of

Morphology primitives and a

Composite for each layer of the

onion, but, in principle, it's possible

to carry on adding as many as you

like, so long as you can keep track

of them all.

Or how about this version,

where I 've also used Color Matrix

primitives in Hue Rotate mode in

order to give each outline its own

color:

It's worth remembering that

filters are bitmap operations that

take place at the rendering stage.

Although you can think of the

Morphology primitive as thinning

or thickening your image, it's not

doing so in a vector sense, but

rather by just adding or removing

pixels in a bitmap version of your

object. With that in mind, it also

makes sense that you can apply

this primitive to bitmap images

imported via the Image primitive.

This allows you to hide the fine

details of an image by eroding

them away, or blotting them out

through dilation of adjacent areas,

without introducing the sort of

softness you would expect if you

just blurred the images. In either

case, Mona ends up looking

somewhat worse for the

experience!

IMAGE CREDITS

“La Gioconda” (aka “Mona Lisa”) by

Leonardo da Vinci

http://en.wikipedia.org/wiki/File:M

ona_Lisa,_by_Leonardo_da_Vinci,_f

rom_C2RMF_retouched.jpg

http://www.peppertop.com
http://en.wikipedia.org/wiki/File:Mona_Lisa,_by_Leonardo_da_Vinci,_from_C2RMF_retouched.jpg

full circle magazine #1 1 3 25 contents ^

HHOOWW--TTOO
Written by Mark Crutch II nnkkssccaappee -- PPaarrtt 5533

Amajor feature of SVG filters is
that they're dynamic. The

calculations to produce the output
aren't simply done once and then
stored in the image – as is often
the case with filters in bitmap
editors. Rather, they're performed
time and time again as you zoom,
pan, rotate objects or otherwise
modify your drawing. This gives
you the flexibility to make changes
to your filter parameters at any
time, but all this recalculation
takes its toll on Inkscape's
rendering speed. So now that
you're (hopefully) starting to
create more and more complex
filters, I 'm going to begin this
instalment by looking at a few
ways to mitigate this slowdown.

When faced with a program
that's slowing down due to too
many calculations, there are two
approaches that can be used to
minimise the problem: reduce the
number of calculations, or find
some way to speed them up.
Remembering that filters are
applied on a per-pixel basis, just at
the point of rendering the object,
one way to reduce the number of

calculations is to zoom out. An
object viewed at a low zoom, which
takes up 1 0x1 0 pixels on screen,
occupies an area of 1 00 pixels.
Even for the simplest of
theoretical filters that means 1 00
calculations – but in practice it will
be many more as, at the very least,
there will likely need to be
separate calculations for the red,
green, blue and alpha channels.
Zoom in so that the object fills
20x20 pixels – what we would
colloquially consider to be “twice
as big” – and the area grows by
four times, to 400 pixels and
therefore 400 calculations per
channel. Zoom right in so that your
small object almost fills your HD
monitor and there's a lot of
calculations to perform!

As well as avoiding large zooms,
you can reduce the number of
pixels to recalculate by simply
resizing your Inkscape window.
Does it really need to be full-sized
to stretch to the whole width of
your widescreen monitor? Try
reducing the canvas size to
something with a squarer aspect-
ratio in the middle of your screen,

with dialogs dragged out to
floating windows at the sides.

Sometimes you don't really
need to see the filtered version of
an object if you just want to zoom
in to tweak its shape. For those
occasions, there's the View >
Display Mode > No Filters option.
There's also an option for viewing
the Outline of objects only, which
can be useful for finding elements
you've lost through one of the
myriad ways of making things
invisible, but which doesn't really
offer anything more in terms of
dealing with slow filters. I mention
it simply because there's also a
Toggle option which cycles
through all three modes – if you
only do one thing today, learn the
keyboard shortcut for it (CTRL-5 by
default, where “5” is the key on the
numeric keypad). The great thing
about this is that you don't have to
change modes before zooming – if
you zoom in and the redraw is too
slow, just press CTRL-5 to switch
modes, abandoning the current
redraw.

How about when you've

finished tweaking a filtered object,
at least for the time being? If you
don't need to refer to it when
working on other parts of the
drawing, it's worth putting it into
its own layer or sub-layer. Turn the
layer visibility off, and there's
nothing for Inkscape to re-
calculate. If you do still want to see
it, you can make a bitmap copy of
the filtered object before you
move the original to another layer.
Select your object and use Edit >
Make a Bitmap Copy (or press ALT-
B): Inkscape will render a bitmap of
your object, complete with filters
applied, meaning that (once the
original is hidden) it doesn't need
to re-calculate the filters as you
work on your document. When
you've finished your drawing you
can delete the bitmap version and
re-display the hidden layer with
your original content. The
resolution of the bitmap copy is
set in the Inkscape preferences –
lower values will be created faster,
but won't be as accurate when you
zoom in closely. Usually this is fine,
though, as the bitmap is generally
there as a position or color
reference, rather than needing to

full circle magazine #1 1 3 26 contents ^

HOWTO - INKSCAPE
be a high-resolution
representation of your object.

These methods reduce the
amount of calculations that need
to be performed, but there are
also ways to speed up filter
performance even when you need
to have the original filtered objects
visible. Within the Inkscape
Preferences (File > Inkscape
Preferences… on 0.48, Edit >
Preferences on 0.91) there is a
panel for adjusting the rendering
of filters, labelled as “Filters” on
0.48 and “Rendering” on 0.91 .

Within this panel you can set
the number of threads that
Inkscape uses for rendering
Gaussian Blur filters (0.48), or

filters in general (0.91) . If you have
a multi-core or hyper-threading
processor in your machine,
increasing this value to suit can
speed up rendering. The usual
recommendation is to set it to the
number of cores minus 1 . That, in
theory, allows a single core to be
used for the main Inkscape
process, whilst using your
remaining cores to render the
filters. In practice there's a whole
operating system between
Inkscape and your cores, so
although it's a useful guideline
there's no guarantee that your OS
will distribute the threads so
neatly.

On 0.91 you can also set aside
some memory in which to cache
the results of your filter
calculations. This should have an
effect on things like panning –
where an already calculated filter
result is moved in and out of view –
but it will likely have less effect if
you zoom in and out, as the filters
will need to be recalculated for
each zoom level anyway.
Nevertheless, if you have plenty of
spare RAM it might be worth
assigning a bit more to this option
to help speed things up where
possible.

Finally there are a couple of
sets of radio buttons governing the
trade-off between display quality
and speed. Filters can be
approximated by rendering at a
lower resolution, giving a faster
redraw but with less accuracy. The
buttons here let you adjust that
balance for filters in general, but
also for Gaussian Blur in particular
(since that tends to be the most
commonly used filter primitive).
Note that these radio buttons only
affect the display of your image on
screen – exporting to a PNG file
always uses the highest possible
quality.

Moving on from performance,
and back to filters themselves, a
small correction of the previous
article: it seems that the Image
primitive in 0.91 does let you use
an SVG element from your drawing
as its input, after all. The problem
is that the element is included
relative to the top left of the page
– so if you try to include something
that's located away from that
corner, there's a good chance you'll
only see empty space pulled into
your filter (that's what led me to
think it wasn't working at all) .
There are two possible solutions to
this: draw your included SVG
element at the top left of the page

(you can put it onto a hidden layer
if you don't want it to be visible
there in the final image), or
increase the size of the filter
region until your included element
is visible, then use an Offset
primitive to move it to the right
place. Neither of these are great
options, in my opinion, but, of the
two, I tend to prefer placing the
included element (or a clone of it)
at the top left corner, on a hidden
layer, as the latter results in a
larger filter area to calculate – and
hence slows down rendering.

Another problem with this
feature in 0.91 occurs if you try to
use the same object both as a
target of the filter chain, and as an
input to the Image primitive. This is
fairly easy to do by mistake, as the
clumsiness of Inkscape's filter UI
makes it likely that you'll lose track
of what is selected and why, but
the result is an instant crash of
Inkscape, with no warning and no
backup file saved. If you plan to
use SVG objects as inputs to the
Image primitive in 0.91 it's
probably best to save your file just
before you add the link.

A good use for the Image
primitive is in conjunction with the
Displacement Map filter. This

full circle magazine #1 1 3 27 contents ^

HOWTO - INKSCAPE
replaces each individual output
pixel with one taken from
elsewhere in your image, so can be
used to create various whorls,
waves and distortions. It takes two
inputs: the first is the image you
want to distort, whilst the second
is another image that acts as a
“map” to tell the filter where to
find each output pixel. The process
is really quite simple when
considered on a pixel-by-pixel
basis, but soon becomes rather
complex when you try to create a
displacement map to perform a
specific distortion.

To begin to understand this
primitive, let's start with a most
basic of chains:

As you can see, the first input
to the displacement map is our

Source Graphic, whilst the second
comes from an Image primitive. In
practice the Image is just a 50%
gray rectangle pulled in as an SVG
element (and positioned at the top
left of the page so that it works in
0.91) . There are also two stars in
the image: the filter is applied to
the red one, whereas the green
one is simply there as a reference
so that you can see the effect
more clearly. The effect
parameters are set to a Scale of 1 0,
with the Red and Green channels
being used as the source of the X
and Y displacements respectively –
those settings will become clear
shortly.

The result of the filter is...
absolutely nothing! To understand
why, let's consider a single pixel in

our output image. That pixel comes
from somewhere in the source
image, with the exact nature of
“somewhere” being defined by the
displacement map (the second
input image). Each pixel in the
displacement map is made up of a
combination of four values (Red,
Green, Blue and Alpha), and the
settings in the filter dialog let you
choose which of those values
should be used for the X offset,
and which for the Y offset. From
there, Inkscape goes through the
following steps to find out what
color the output pixel should be:

1) Find the color of the equivalent
pixel in the displacement map.
2) Extract the X and Y offsets from
the color components that have
been set in the filter.
3) Divide the offsets by 255 to
normalize them into a range of 0 to
1 .
4) Subtract 0.5 from the offsets to
shift them into a range of -0.5 to
0.5
5) Multiply the offsets by the Scale
value set in the filter.
6) Add the offset values to the X
and Y coordinates of the pixel to
get a new pair of coordinates.
7) The output pixel should be set
to the color of the pixel from the
input image that is located at the

new coordinates, or an
interpolated color based on the
surrounding pixels if the
coordinates don't point to a single
pixel.

Bear in mind that our map
consists only of 50% gray, with
RGB values of 1 27, 1 27, 1 27. If you
follow the steps above you'll find
that gives an offset of about -0.02
pixels for both X and Y – close
enough to zero to effectively mean
that the output pixel is taken from
the same position as the input
pixel. Extend that over every pixel
in the filter, and it's clear why our
output looks exactly the same as
the input.

Changing the rectangle to a
black fill (0, 0, 0) alters the
calculation somewhat. Now the
offset becomes -5, -5 so our output
pixel is the color of the pixel
located a little up and to the left in
the original image. That gives the
appearance of the whole image
having moved down and to the
right.

full circle magazine #1 1 3 28 contents ^

Mark uses Inkscape to create three
webcomics, 'The Greys' , 'Monsters,
Inked' and 'Elvie' , which can all be
found at
http://www.peppertop.com/

HOWTO - INKSCAPE

Changing the rectangle to
white (255, 255, 255) has the
opposite effect – the image
appears to move up and to the left.
Because we've specified Red and
Green for the X and Y
displacement, filling it with pure
red (255, 0, 0) produces different
displacement values for the two
coordinates, effectively moving
the image down and to the left;
pure green (0, 255, 0) moves it up
and to the right. In all cases, the
value of the Blue component (or,
indeed, the Alpha component)
doesn't make any difference. Pure
cyan (0, 255, 255) has exactly the
same effect as pure green, since
we've configured the filter to
consider just the Red and Green
components.

Used with a flat color like this,
Displacement Map is just a very
poor replacement for the Offset
primitive. Where it comes into its
own is when your displacement
map contains various colors in
order to use different offsets for
each pixel. We know that a black
fill pulls its pixels from up/left, and
a white fill from down/right – what
happens when we use an image
with both black and white in it?
Let's give it a try with a group,

containing a black spiral on a white
background – and we'll apply it to
something a bit more complex
than a red star.

By adding a little Gaussian Blur
between the Image primitive and
the Displacement Map you can
soften the edges to give a nice
ripple effect – with its intensity
adjusted by changing the Scale
parameter. Or how about a red-to-
green gradient to give a fish-eye
type of effect?

It's a bit of a cheat, because
using just red and green only
“stretches” your image in two
directions. Overlaying a circle with
perpendicular gradient that runs
from white to transparent to black
gives a more accurate result, but
does start to hint at the biggest
problem with the Displacement

Map primitive: creating a suitable
map image for the effect you want
to achieve isn't always easy or
obvious. But there is one way of
creating a map that's quite simple,
and extremely useful: the
Turbulence primitive.

If you need a refresher on this
primitive, take a look at Part 51 of
this series. In short, it's a fast way
to create areas filled with pseudo-
random colors which, when used as
a distortion map, will pull your
image this way and that as you
tweak the parameters. Use a low
frequency Fractal Noise setting to
add grotesque distortions to your
image. Crank up the values a little
to produce the sort of modesty-
providing distortions you might
find in a bathroom window. Further
still and you've got a pointillistic
masterpiece of shattered pixels.
Unlink the horizontal and vertical
frequencies and you can have a
fluttering flag, or horizontal
ripples.

But make sure you take the
time to look at the edges. And
what edges they are! From slight
undulations, through spattered
ink, to fuzzy vignettes. Imagine
how these filters might look on
shapes with even more edges, such
as squares, stars and text. Better
still, don't imagine; roll your
sleeves up, dive into Inkscape's
editor, and create your own filters.

Image Credits

“La Gioconda” (aka “Mona Lisa”) by
Leonardo da Vinci
http://en.wikipedia.org/wiki/File:M
ona_Lisa,_by_Leonardo_da_Vinci,_f
rom_C2RMF_retouched.jpg

http://www.peppertop.com
http://en.wikipedia.org/wiki/File:Mona_Lisa,_by_Leonardo_da_Vinci,_from_C2RMF_retouched.jpg

full circle magazine #1 1 4 25 contents ^

HHOOWW--TTOO
Written by Mark Crutch II nnkkssccaappee -- PPaarrtt 5544

This month, we're going to look

at the Convolve Matrix filter

primitive. Convolution is a

mathematical term for a process of

repeatedly applying one function

to the varying output of another

function. In the computing world,

it's commonly used with discrete

values, rather than continuous

ones, as you might get when

dealing with sampled audio or,

indeed, with individual pixels in an

image. So, in digital signal

processing, convolution generally

means using a function to map a

series of values to a new series. In

SVG filter terms, that means

mapping one set of pixels to a new

set. The “function” is defined using

a matrix of numbers, hence the

filter name is “Convolve Matrix” -

although “map pixel values using a

matrix” would have perhaps made

it a little more understandable to

the layman.

Let's look at how a convolution

matrix actually works by picturing

its effect on a simple image made

up of a small set of pixels. For this

demonstration, we'll use black and

white pixels with values of 0 and

255 (with numbers in-between

being shades of gray). In a real

filter there are three color

channels, so our single-channel

black-and-white image here is

merely a model to represent the

calculation process. The shape

we'll use is just a 9-pixel square

inside a larger 25-pixel square.

Our first matrix will be a 3×3

array, with each cell containing the

number 1 .00, and the “target”

specified as the center cell of the

matrix. Here's how that looks in

the Inkscape GUI :

The convolution process itself

consists of taking our matrix and

positioning it so that the target

cell in the matrix is positioned over

each pixel in the input image, in

turn. We're going to look at the

calculation that takes place for the

first black pixel in our input image

– the one with the red outline. The

9 pixels covered by the matrix are

all multiplied by the corresponding

value in the matrix cell, then added

together. The result is clamped so

that it doesn't exceed 255 or drop

below 0, and is then used as the

value for the output pixel. This

image might clarify things a little –

the green area represents the 3×3

matrix, with each pixel's

contribution to the output shown.

The value of the output pixel is

therefore:
(255×1.00) + (255×1.00) +
(255×1.00) +
(255×1.00) + (0×1.00) +
(0×1.00) +
(255×1.00) + (0×1.00) +
(0×1.00)

I t doesn't take much

mathematical skill to realise that

the five white pixels each

contribute a value of 255 to the

output, whilst the black pixels

contribute nothing. So the value

used as the output pixel is just

255×5 = 1 ,275. Except that the

output values are clamped, so the

actual output value is just 255 –

this matrix has turned the black

pixel into a white one.

full circle magazine #1 1 4 26 contents ^

HOWTO - INKSCAPE

Moving on to the next pixel, we

get a similar result. This time there

are only three white pixels that

contribute to the output, but

that's still a value of 765, which

gets clamped, so the output is

again white.

Considering the remaining

black pixels in our test image, it's

pretty obvious that all the outside

ones will turn white. In fact it's

only the very center pixel that

remains black. So the output from

this particular convolution matrix

is just a single black pixel at the

center of a white square.

Some of you may have noticed

that I 've conveniently started with

a pixel that is not on the very edge

of the filter area. How does

Inkscape calculate the value for

the top-left pixel, for example,

given that five of the points

covered by the matrix simply don't

exist? The answer lies in the Edge

Mode popup in the filter settings:

“Duplicate” copies the pixels from

the outer edge to fill any missing

values; “Wrap” uses the pixels from

the opposite side of the image to

fill the gaps as though it were

working on a tiled version of the

input; “None” just sets the channel

values for the missing pixels to

zero.

Or at least that's how it's

supposed to work. According to

the official Inkscape manual, this

parameter is completely ignored

by Inkscape, despite being present

in the UI . It doesn't specify what

method is used to calculate the

missing pixels and, as the official

manual has not been updated for

version 0.91 , I 'm not sure if this

situation has changed with the

more recent release. So we'll just

ignore the question, and assume

that Inkscape does something to

populate the missing pixels or omit

them from the calculation, so that

we don't have to worry too much

about it.

Because the values we've

chosen tend to result in

calculations that get clamped, our

filter, as it stands, pretty much just

creates black and white pixels in

the output. Before clamping, we

were getting results of 1 ,275 and

765, but we then proceed to throw

away any difference between the

values because they're both

greater than 255. By using the

Divisor control in the filter

settings, we're able to scale the

output of the calculations prior to

any clamping, allowing us to rein in

the values to preserve those

differences. A good rule of thumb

is to set the divisor to the same

value as the total of the individual

numbers in your matrix. By setting

it to 9 in our example image, the

outputs of 1 ,275 and 765 are

reduced to 1 42 (1 ,275 ÷ 9) and 85

(765 ÷ 9), giving us this result:

Now each output pixel is the

average of nine pixels from the

input image. Although it might not

be clear from this small example,

the outcome is a simple blurring of

the input image. In reality, it would

be better to use a Gaussian Blur

primitive if you just want to soften

your image a bit, but this was, of

course, just a demonstration of the

mathematics that takes place

behind the scenes with the

Convolve Matrix.

Now let's move on to some

more interesting matrices. I 'm

going to stop with the pixel-by-

pixel approach, and the

mathematical explanations – it's all

just an extension of the examples

I 've shown so far, but with larger

images and multiple color

channels. We'll use a different

classical image to demonstrate

these because Mona, quite

honestly, isn't that interesting

when you apply a convolution

matrix. So we'll switch to

Michelangelo's “Creation of Adam”,

with each image showing the

unfiltered version at the top left,

and the filtered one at the bottom

right. We'll start with a “Sobel”

matrix:

A Sobel operator emphasises

the differences between adjacent

pixels in one direction or another.

The result is essentially a map with

bright colors where there is a sharp

full circle magazine #1 1 4 27 contents ^

HOWTO - INKSCAPE
transition between pixels, and dark

colors where there is little or no

difference between adjacent

pixels. In practical terms,

therefore, it acts as an edge

detection filter, in this case

highlighting vertical edges (note,

particularly, the coving at the right

of the image).

Rotating the values of the

matrix through 90° (so that the top

row contains 1 , 2, 1 and the

bottom row is -1 , -2, -1) turns it

into an edge detection filter for

horizontal edges. In this case the

coving vanishes, but any near-

horizontal shapes are accentuated:

A more general form of edge

detection, which highlights both

vertical and horizontal lines

resulting in an “outline” version of

the original image, can be achieved

with the following matrix:

It's easy to imagine this,

followed by a Color Matrix

primitive, forming the basis of a

“pencil sketch” filter chain, but you

can achieve a similar result by

using the Bias parameter in the

filter preferences. This lets you add

a fixed offset to the result of each

calculation, and acts to brighten or

darken the output image. Setting

this parameter to 1 .0 with the

previous filter gives this result:

A variation on edge detection is

edge enhancement. This matrix

will emphasise edges but still allow

the original colors to show

through, resulting in a sharpened

appearance to the image:

Here's another matrix that

darkens some edges whilst

lightening others, giving rise to an

embossed appearance.

As you can see, there are a

variety of effects that can be

produced with this primitive,

although it's far from intuitive to

work out what values you need to

enter into the matrix to get a

particular output. Although the

matrix approach allows for a vast

number of possibilities, there are

really only a few well-known

matrices that are commonly used.

A search online will provide you

with some more examples, but

they all fall into the same basic

themes I 've covered here.

Before concluding, there are a

few more controls in the filter UI

that need to be explained. The Size

parameter, as you might expect,

sets the size of the matrix. I 've only

used 3×3 matrices in this article,

but 5×5 is also a common size, and

you could go higher still, to

consider a wider area around each

source pixel. Just remember that

the size of the matrix defines how

many pixels need to be read and

calculated for each output pixel, so

increasing this parameter can

quickly impose a much larger

processing burden on Inkscape.

In the examples here, I 've

assumed that the center of the

matrix is positioned over the

target pixel for each calculation.

It's possible to change that using

the Target fields in the UI , where

0,0 would set the top-left cell of

the matrix as the target. All this

does is shift the output a little, so

there's little reason to worry about

it too much.

Finally, the Preserve Alpha

checkbox determines whether the

alpha of the original pixel is

transferred to the output

unchanged (checked), or if the

alpha channel is also subject to the

convolution process (unchecked). I

tend to leave this checked, as it's

one less channel of calculations for

Inkscape to perform, and I haven't

yet found myself needing to

convolve the alpha channel.

Image Credits

“The Creation of Adam” by

Michelangelo

https://en.wikipedia.org

https://en.wikipedia.org/wiki/File:Michelangelo_-_Creation_of_Adam.jpg

full circle magazine #1 1 5 28 contents ^

HHOOWW--TTOO
Written by Mark Crutch II nnkkssccaappee -- PPaarrtt 5555

This month we'll be looking at

the last of the filter primitives

available in Inkscape 0.48, Diffuse

Lighting and Specular Lighting.

These are used to simulate the

effect of lights shining on your

objects, and constitute two thirds

of the Phong reflection model. The

third part, Ambient Lighting, refers

to light that's present everywhere

in an image rather than coming

from a specific light source.

There's no need for a specific filter

for this part as it is formed by the

fill and stroke colors of the objects

in your image.

Diffuse Light refers to the

general light and shadow on an

object that doesn't change

significantly as you move your

viewpoint. Specular Light, on the

other hand, refers to the bright

spots or reflections that shift and

change as you move. Look at a

shiny object near you and move

your head around to see the

difference – notice the specular

highlights on edges and corners

that move with you, and the

diffuse shadows and glows of the

main body of the object that

remain largely unchanged.

To begin, create an object or

group to apply the filter to, and

then add a Diffuse Lighting

primitive in the usual way. There

are a few parameters to modify,

but mostly it's a case of moving

sliders by trial-and-error in order to

achieve the result you want.

The first parameter to choose is

the color of your light. This has a

huge effect on the output of the

filter, as the lighting effect

completely replaces the original

color of your objects, rather than

mixing with the underlying hues. In

the example that follows, all the

text objects are teal (a blue-green

color) , but the color used in the

filters is yellow. Notice that no teal

appears in the output images.

In practice, it's only the alpha

channel of the input image that's

used by this primitive – so it

doesn't matter whether you

connect it to the full Source

Graphic or just the Source Alpha,

the result will be the same. The

alpha channel is used as a “bump

map” to determine each pixel's

position along the z-axis – more

opaque areas protrude further

from the background. The Surface

Scale and Constant sliders can be

used to scale and offset the alpha

values in order to alter the

apparent depth of the object.

The Kernel Unit Length

parameter can be largely ignored.

It's not used by Inkscape, but may

have an effect on other SVG

viewers, where it's used to define

the size of the pixel grid used for

the filter calculations. I usually just

leave it at zero.

Finally, it's time to choose the

type of light source: Distant, Point,

or Spot. The first indicates a light

source that is an infinite distance

from your object, such that all the

rays of light that arrive are parallel

to one another. The Azimuth

parameter sets the location of the

light source as an angle – 0° places

it to the right of your object, with

increasing values moving it

clockwise around the image until

360° puts it back at the right again.

Drag this slider to see the effect in

real-time. The Elevation parameter

sets the angle to the drawing

plane: imagine a light sitting flush

with your computer screen at 0°

(casting low, dark shadows); as you

move the slider towards 90°, the

light swings out of the monitor,

towards you, until it's directly over

your objects; continue towards

1 80° and it carries on following the

same arc until it's flush with the

monitor on the opposite side of

your image; any further values

continue moving the light in a

semicircle behind the monitor, and

tend to not be particularly useful.

Specifying two polar values like

this defines a bearing in three-

dimensional space. If you ever

watch an episode of Star Trek

where a crew member states their

full circle magazine #1 1 5 29 contents ^

HOWTO - INKSCAPE
course as “249 mark 38,” this is

what they're doing – just stating an

azimuth and elevation to describe

the direction the ship should head

in. It always amazes me that

they're able to judge those values

to the nearest degree, but then I

haven't had the benefit of a

Starfleet Academy stellar

cartography course!

With two polar values able to

define a bearing, it only takes a

third parameter, distance, to

specify a particular point in space.

When selecting the Point Light

option, you might expect to see

the same two sliders, joined by a

third. But the SVG working group

decided that defining a specific

point in 3D should be done using

Cartesian coordinates, so instead

you have three anonymous fields

with a single “Location” label,

representing the location of the

point light using x, y and z

coordinates. There's no means to

graphically pick an x and y location

on the canvas, and the values are

in terms of the coordinate system

of the object being lit (which is not

necessarily the same as a the

coordinate system of the main

drawing). So, yet again, it's down

to some trial and error.

Whereas the Distant Light, at its

infinite distance from the scene,

projects an even illumination, the

Point Light is far more nuanced. It

illuminates areas near to the light

source more than those at a

distance, leading to gradients in

the final color.

The Spot Light option is even

more precise in its effect. This

requires two sets of coordinates –

one to specify the location of the

light, and the other to define the

direction it's pointing in (which is

actually achieved by specifying the

point in space it's aiming at) . The

light is projected in a cone from

the source to the target, with an

additional two sliders to set the

characteristics of that cone: the

Specular Exponent sets how

focused the light is, whilst the

Cone Angle defines the shape of

the cone. The cone has a hard edge

to it; any points outside it will not

be illuminated at all, so you will

need additional filter steps if you

want a softer edge.

This example shows the three

types of light in use on some text

objects, all of which are actually

blue as their base color!

You'll notice how “flat” all of

these are. Because the bump map

is created from the alpha channel

of the input image, and our input

image has alpha values of only 0

and 255, there’s no scope for

gentle transitions in height. If you

want a softer edge to your lighting

you'll need to introduce some

variety in the alpha channel. The

easiest way to do this is by using a

Gaussian Blur primitive to the

input image.

Just adding a blur will tend to

spread the edge of your text

outwards as well as inwards

(second image in the next

example). For a more pronounced

effect, it's often worth using a

Morphology filter to erode the

input image before you blur it. By

thinning your objects first, the full

extent of the blur can be kept

inside the boundaries of the

original shapes (third image). If you

then add a Composite filter, set to

“In”, to the output of your lighting

primitive, you can clip the result to

give you something more like the

rounded text you were probably

looking for (fourth image).

Still we're left with that yellow

color from the lighting filter. This is

where the “Arithmetic” option of

the Composite filter comes in (re-

read part 50 if you need a

refresher on this primitive). The

output from the Diffuse Light filter

full circle magazine #1 1 5 30 contents ^

HOWTO - INKSCAPE
is intended to be multiplied with

the source image in order to

overlay the lighting effect onto the

underlying objects, but rather than

providing a nice, obvious shortcut

to this operation, the Inkscape UI

just exposes the parameters of the

underlying SVG model. For each

channel of each pixel, the

Arithmetic operator performs the

following calculation:

result = (K1×i1×i2) + (K2×i1)
+ (K3×i2) + K4

Where K1 -4 are constants set in

the UI , and i1 and i2 represent the

values from a pair of input images.

By setting K1 to 1 .0 and all the

other constants to 0, this equation

simplifies down to:

result = i1×i2

In other words, a simple

multiplication of input values,

which is exactly what we want.

Changing the “In” operator in the

previous filter chain to

“Arithmetic”, and setting the

constants to 1 , 0, 0, 0 results in a

green-looking output – the result

of shining yellow light on a teal

object.

Now we have an illuminated

object whose base color has an

effect on the output. This is

obviously much more flexible than

the simple “In” operator, which

would have us changing the

lighting color in the filter itself

every time we want to alter the

result. If you're worried about

losing the “clipping” effect of the

“In” operator, don't be: the

multiplication operator also

applies to the alpha channel, so all

those areas in the source image

with alpha=0 will result in

transparent pixels in the output as

well.

Moving on to the Specular Light

filter, things look pretty similar in

the filter UI . There's one additional

parameter, but otherwise it's all

the same as for the Diffuse Light

primitive. That extra parameter is

“Exponent” which, according to the

SVG spec and the Inkscape tooltip,

is used to make the specular

lighting more “shiny”.

Unlike Diffuse Light, this filter

results in an image with mixed

alpha values. Watch out for this, as

seemingly bright reflections might

actually just be a white background

showing through! In the following

image you can see that effect quite

clearly on the first and second

examples, where bright white

“reflections” to the left of the

filtered text are exposed as holes

in the alpha channel once the

yellow background is added behind

them. Note that I 've used a red

Point Light in these examples, but

still with teal text as the original

object.

The four images above show

the effect of the Specular Light

filter on the plain text, then on an

eroded version of the same. I didn't

add a Gaussian Blur this time, as I

wanted the specular reflections to

be sharp and clear. Cranking up the

Exponent value in the third image

gets close to an output that just

shows the highlights, which can

then be added back to the original

source image again using another

Composite Primitive (fourth

image).

This time the “Arithmetic” mode

is used again, but with values of 0,

1 , 1 , 0 – which has the effect of

reducing the equation down to:

result = i1+i2

This primitive therefore adds

the reflections to the original

image, which is the recommended

approach from the SVG

specification. Note, however, that

a little background opacity has also

sneaked through, so you might

want to apply another Composite

Filter, set to “In”, to ensure that

the result is clipped to the shape

of your original objects.

Finally it's time to combine both

lighting filters to produce a fully lit

object, with both diffuse and

specular light. Once again, the

original text is teal, so the yellow

diffuse light gives it a green

full circle magazine #1 1 5 31 contents ^

Mark uses Inkscape to create three
webcomics, 'The Greys' , 'Monsters,
Inked' and 'Elvie' , which can all be
found at
http://www.peppertop.com/

HOWTO - INKSCAPE
appearance – but you can also see

the glinting highlights from the

red light source of the specular

filter making an appearance.

The full filter chain for this

effect isn't too complex if you take

it one step at a time. First the

Morphology primitive erodes the

text of the Source Graphic a little,

with the output from that going

straight into the Specular Lighting

primitive, to give those sharp, red

highlights. The Morphology output

also goes to a Gaussian Blur to

soften the image before it's used

in the Diffuse Lighting primitive.

From there, it's just a matter of

combining everything together:

the first Composite filter

(“Arithmetic” mode: 1 , 0, 0, 0)

multiplies the Source Graphic with

the output from the Diffuse

Lighting. The second Composite

(“Arithmetic” mode: 0, 1 , 1 , 0) adds

in the Specular Lighting highlights.

Although the result is almost

perfect, there was a slightly visible

background, albeit with a low alpha

value. A third Composite filter (“In”

mode) simply tidies everything up

a bit.

Although they're no match for

real raytracing or 3D modelling,

the lighting effects in SVG can be

useful for adding a little pseudo-

depth to your images. This needn't

be anything as obvious as the 3D

text presented here: just a little

highlighting can turn an otherwise

bland texture into something far

more interesting, or make your

objects stand out from the

background. As usual, the best way

to find out what can be done with

them is simply to experiment.

http://www.peppertop.com

full circle magazine #1 1 6 27 contents ^

HH OOWW--TTOO
Written by Mark Crutch II nn kkssccaa ppee -- PPaa rrtt 5566

There's one last filter primitive

to visit in this series, which I 've

kept until last simply because it's a

new addition in 0.91 , so isn't

available to users who are still

using version 0.48. The filter is

called Component Transfer, and its

purpose is to use a function (called

a “transfer function”) to adjust the

distribution of values within each

color channel (or “component”) . It

allows you to adjust brightness or

contrast, or to set hard thresholds

for posterization effects. As usual,

I ' ll begin by considering the filter's

operation on a single color

channel, then you can extrapolate

from there to how it behaves with

three channels plus alpha.

A single color channel of a

single pixel is represented by a

number from 0 (no color) to 255

(completely saturated). The

distribution of the values is linear –

ramping up along a straight line –

and the default settings for the

Component Transfer primitive

leave this line untouched. A value

of 0 into the filter results in 0 out.

1 36 in gives 1 36 out. And so on.

This can be represented as a graph,

where the value of the channel

coming into the filter is shown on

the x-axis, and the value that

comes out of the filter is shown on

the y-axis.

In practice, this primitive maps

the input values to a range from 0

to 1 rather than 0 to 255, but the

result is the same: with the default

settings in the filter (“Identity”) ,

every input channel is mapped to

the output without being affected.

The purpose of the Component

Transfer filter is to play around

with that simple 45° graph to let

you change the way that input

values are mapped to output

values.

Basic mathematics tells us that

a straight line graph like this can

be defined by the slope of the line

and the point at which it intercepts

with the y-axis. One way to modify

the mapping, therefore, is to alter

the slope and the intercept point –

a pair of values provided by the

“Linear” option in the filter. The

identity line has a slope of 1 – that

is, for every increase of 1 along the

x axis, the y value also increases by

1 . By setting it to a value of 2 we

can make the slope steeper,

causing the output to appear

brighter. Here's how it looks for

one channel in the filter dialog:

As well as showing the effect

on the slope, I 've also included a

grayscale version of Mona, with

the right-hand side showing the

result of applying this change to all

the color channels:

Changing the slope to a smaller

value, 0.5 in this case, reduces the

brightness of the image:

By changing the intercept you

can alter the contrast of the image;

you may also want to tweak the

slope to ensure you don't also

change the brightness at the same

time (unless that's your intention).

For example, setting an intercept

of 0.5 with a slope of 1 would give

you this result:

Bear in mind that color

channels can't go below 0 or above

1 27, so the graph changes shape

when you hit these limits. As you

full circle magazine #1 1 6 28 contents ^

HOWTO - INKSCAPE
can see, it becomes horizontal

halfway along the x-axis, washing

out any values above 1 27 by

turning them completely white.

Compensating for this by changing

the slope to 0.5 preserves the

detail a lot more, because all 255

input values are mapped, rather

than just clamping half of them.

The intercept value can also be

negative, to give a darker output,

again with reduced contrast. It's

worth noting that the slope can

also be negative, which inverts the

mapping so that larger input

values are converted to small

output values, and vice versa. With

a slope of -1 and an intercept of 1 ,

the output from the channel is

completely inverted:

The linear mode of this filter

primitive assumes that you want a

simple mapping from input to

output, to adjust the brightness or

contrast by altering the slope and

position of a single line. But there

are times when a single straight

line (even one that flattens out at

the limits of the color range) just

doesn't cut it. What happens if you

want the output to ramp up, then

down again, such that values at the

extreme ends of the range are

mapped to low numbers, whilst

those in the middle are mapped to

high numbers? For that we have

the “Table” mode.

“Table” may be a little

misleading, as the table you have

to supply is one-dimensional. “List”

might have been a better name,

but table is what the SVG Working

Group decided to go with, and

what Inkscape exposes. The

numbers in the list represent the

start and end values for a series of

straight line segments; the number

of values in the list determines

how many segments there are. For

example, the table below has five

values (you can use spaces and/or

commas to separate them):

These five values give rise to

four separate segments in the

graph, causing the output values to

ramp up and down rapidly as the

input varies:

A table consisting of just (0, 1)

would be the same as the identity

mapping, whereas (1 , 0) would

invert the image. To flatten a

section of the line, use the same

value twice in succession: (1 , 0.5,

0.5, 0) gives an inverted image

where the details in the low and

high values are preserved, but the

middle third of numbers are all

mapped to 1 27:

As you can see, the input range

is divided evenly based on the

number of values in your table, and

the line ramps smoothly between

them. Sometimes, however, a

smooth transition is the last thing

you want. Suppose that you have

to reduce the number of colors in

an image (“posterizing”) , or even

reduce it down to a stark black-

and-white version. For these cases

there is the “Discrete” mode.

With discrete mode you still

provide a “table” of values, but

rather than defining start and end

points that will be interpolated

between, you provide a list of the

only output values that are

allowed, and Inkscape will map

them to sections of the input

range. Provide only two numbers

and any input value of 1 27 or less

will be mapped to the first value,

1 28 or greater will be mapped to

the second value. Instant

monochrome! Provide four

numbers and values from 0-63 will

be mapped to the first, 64-1 27 to

the second, and so on.

Except there's a bug in Inkscape

that prevents it working correctly.

In discrete mode the last value in

your list is skipped – so if you

provide two values expecting to

get a monochrome output you'll

find that every input value is

mapped to the first number, and

full circle magazine #1 1 6 29 contents ^

HOWTO - INKSCAPE
the second is never used. The

workaround is obviously to provide

three numbers (typically just

duplicating the last one), but then

the filter will not work correctly in

other SVG programs or web

browsers. The issue is tracked on

Launchpad as bug #1 046093, and a

fix has been committed for the

forthcoming 0.92 release of

Inkscape, which is good – but it

does also mean that if you provide

an extra value to get the filter to

work in 0.91 , your image will look

wrong when you upgrade to 0.92.

For the examples below I 've

pretended that Inkscape works the

way it should – just bear in mind

that when I say (0, 1) you should

actually use (0, 1 , 1) to get it to

work on the current release.

Speaking of which, here is that

monochrome output, using a

discrete table containing (0, 1) :

This one uses values of (1 , 0.75,

0.5, 0.25, 0) to posterize Mona

down to five shades of gray, whilst

inverting the output at the same

time:

One thing you've undoubtedly

noticed about all of the modes so

far is that the graphs consist

entirely of straight lines – either

horizontal ones in the case of

Discrete, or angled in the case of

Table, Linear and Identity. The last

option adds a bit of curvature to

the graph, but don't get too

excited; it doesn't allow you to

draw an arbitrary Bézier curve, but

rather just supply three

parameters for a gamma

correction curve.

In case you're not familiar with

gamma correction, it's a non-linear

mapping of input to output values,

which is used to adjust the

brightness and contrast of an

image to compensate for

differences in perceived brightness

at the ends of the range. Think of it

as a more sophisticated option

than just changing the slope and

intercept using the Linear mode,

because it allows lower values to

change at a different rate than

higher values.

The Gamma mode takes three

parameters: Amplitude, Exponent

and Offset. The output value from

the transfer function is calculated

using the following formula:

output = Amplitude ×
inputExponent + Offset

That is, the input value (which is

in the range 0 to 1) is raised to the

power of the Exponent value,

multiplied by the Amplitude and

added to the Offset. Often the

Amplitude is left as 1 , and the

Offset as 0, so the output is simply

the input raised to the power of

the Exponent. For an Exponent of

2, therefore, the result looks

something like this:

To lighten an image simply use

an exponent value of less than 1 –

such as in this example with a value

of 0.5.

Notice the similarity to the

Linear mode with slope values of

0.5 (to darken) and 2 (to lighten).

Gamma mode often gives a more

detailed result, particularly where

there are subtle changes in the

darker areas of the input range.

Although I 've used a grayscale

image to illustrate this filter, in

practice you can use a different

transfer function for each color

component, and also for the alpha

channel – useful for leaving the

alpha channel untouched in

Identity mode whilst you alter the

color channels, or alternatively for

only affecting the alpha channel

whilst the colors remain

untouched.

To finish, therefore, here's a

final image of Mona in all her

colorful glory, with four different

component transfers applied. The

top left quarter has a Table (1 , 0)

applied to just the green channel,

with the others left as Identity; the

top right uses Table (0, 1 , 0, 1 , 0) on

full circle magazine #1 1 6 30 contents ^

THE OFFICIAL FULL CIRCLE APP FOR UBUNTU TOUCH

B rian Douglass has created a

fantastic app for Ubuntu Touch

devices that will allow you to view

current issues, and back issues, and

to download and view them on your

Ubuntu Touch phone/tablet.

INSTALL

Either search for 'full circle' in the

Ubuntu Touch store and click

install, or view the URL below on

your device and click install to be

taken to the store page.

https://uappexplorer.com/app/

fullcircle.bhdouglass

Mark uses Inkscape to create three
webcomics, 'The Greys' , 'Monsters,
Inked' and 'Elvie' , which can all be
found at
http://www.peppertop.com/

HOWTO - INKSCAPE
all the color channels; the bottom

right uses Discrete (0, 0.25, 0.5,

0.75, 1) on the color channels to

posterize the image, and the

bottom left uses Table (1 , 0) on all

the channels to produce a

“photographic negative” effect.

Image Credits

“La Gioconda” (aka “Mona Lisa”) by

Leonardo da Vinci

http://en.wikipedia.org/wiki/File:M

ona_Lisa,_by_Leonardo_da_Vinci,_

from_C2RMF_retouched.jpg

https://uappexplorer.com/app/fullcircle.bhdouglass
http://www.peppertop.com
http://en.wikipedia.org/wiki/File:Mona_Lisa,_by_Leonardo_da_Vinci,_from_C2RMF_retouched.jpg

full circle magazine #1 1 7 33 contents ^

HHOOWW--TTOO
Written by Mark Crutch II nnkkssccaappee -- PPaarrtt 5577

Filters are an important topic

for making the most out of

Inkscape – at least for artistic

endeavours. There's always a

danger with vector graphics that

they can end up looking too

precise and sterile for some uses,

and filters offer a way to add back

in some of the subtle (and not so

subtle) variations in texture and

color that are often a hallmark of

bitmap graphics. At least that's my

justification for having spent the

previous nine instalments of this

series discussing filters but, having

described each primitive in some

detail and shown a few filter chains

along the way, this article is the

last on the topic, and I 'll move on

to something else next month.

Way back in part 48, I briefly

mentioned the source input

columns at the right of the filter

dialog (outlined in red). We've

spent a little time with “Source

Alpha”, and a lot more with

“Source Graphic”, but that still

leaves four other options that

have, so far, been completely

ignored. There's a good reason for

that: quoting from part 48, I wrote

“of the six inputs shown in the UI ,

two of them require special

treatment… and another two

don’t work at all!”

Let's first of all rule out the two

that don't work. “Fill Paint” and

“Stroke Paint”, according to the

SVG specification, should do

exactly what their names suggest.

They should act in a similar way to

the Flood primitive, by filling the

filter area with a color, but rather

than specifying the value within

the filter primitive itself, it is taken

from the selected object's Fill or

Stroke color. This sounds like a

great way of pulling a couple of

colors into your filter chain, and

allowing you to create filters that

can adapt to the colors of the

objects they're applied to. Except

it doesn't work at all in Inkscape.

There's one obvious technical

issue with these input sources: a

fill or stroke in SVG can be more

than a simple flat color. This

doesn't really affect their use in a

filter chain – a pattern can be

repeated to fill the filter region, as

can a gradient if the definition

allows it – but it does significantly

complicate the rendering process

for Inkscape, and has not (yet)

been tackled by the developers.

Nevertheless, even just being able

to use solid colored fills and

strokes would be a useful addition.

If there are no plans to add even

that much, it's long past the time

when these couple of columns

should be removed from the UI to

avoid further confusion.

The remaining source inputs,

“Background Image” and

“Background Alpha” can be used

within Inkscape, but only after a

little preparation. These inputs

represent an “image snapshot of

the canvas under the filter region

at the time that the 'filter' element

is invoked” (according to the SVG

spec). In other words, they pull in a

flattened bitmap version of the

drawing behind the filter region

(or just the alpha channel of the

same area), and make it available

inside the filter chain, much like a

bitmap pulled in via the Image

primitive. The spec also points out,

however, that holding a copy of

the background image in memory

“can take up significant system

resources”, so the SVG content

must “explicitly indicate” to the

application that the document

needs access to the background

before these two input sources

will have any effect. It then goes

on to define how a document

should specify that it needs access

to the background by putting an

attribute called “enable-

background” onto an ancestor

container element, giving it a value

of “new”. You can fiddle around

with the XML editor, or even

modify your file's source code in a

text editor, to achieve this, but

there is a much easier way.

Before explaining the simpler

method, I ' ll use a very basic test

full circle magazine #1 1 7 34 contents ^

HOWTO - INKSCAPE
file to clarify exactly what I 'm

talking about. Here I have a pair of

green circles as my background

objects. The background consists

of any content below the filtered

object in the z-order, so could just

as easily have been a single shape

or an entire drawing. In front of

the circles is a red square, the

object I ' ll be applying the filter to.

The filter itself is quite simple –

just a Color Matrix primitive set to

Hue Rotate mode, using

Background Image as the source.

The result, at this point, is

rather disappointing. The square

simply becomes transparent, with

no effect on the background circles

at all.

Now to add the “enable-

background” attribute. Just open

the Layers dialog and change the

blend mode for one of the layers

to something other than “Normal”

(see Part 9 of this series if

necessary). Don't panic if it has an

unexpected effect on your image,

as you can immediately change it

back to “Normal” once again. The

magic will already have been done.

My test image now looks like

this, with the background colors

rotated within the area covered by

the square's filter region. By

default the filter region extends

beyond the selected object, which

is why the color shift is present

outside the dotted outline of the

selection box. The square itself has

disappeared, because there's

nothing in the filter chain that pulls

in the “Source Graphic” input.

So what happened? What was

the black arts and voodoo that

made the filter work just by

changing a blend mode, then

immediately changing it back

again? It's actually quite simple:

the blend mode popup in the

layers dialog is just a shorthand

way to add a filter with a Blend

primitive to the document. You can

even see it appear in the filter

editor.

Although it appears in the

dialog, the filter isn't attached to

any objects that you can select on

the canvas. Rather it is linked to

the layer itself. Remember that

layers are just a group with some

Inkscape-specific attributes added,

so it's not really any different to

having a filter applied to a group of

objects. When the filter is created,

Inkscape automatically connects

the inputs of the Blend primitive to

the Source Graphic (i.e. the layer

that's actually a group), and to the

Background Image. At the same

time, it adds the “enable-

background” attribute to the root

node of the SVG document, visible

here in Inkscape's XML editor.

The key thing is that switching

the Blend Mode back to “Normal”

leaves this attribute intact,

although it does remove the filter.

full circle magazine #1 1 7 35 contents ^

HOWTO - INKSCAPE

From that point on, however, you

are free to use the Background

Image and Background Alpha

inputs in your own filter chains.

That concludes our detailed

examination of the mysterious art

of creating your own filter chain.

But, if you've been experimenting,

you've doubtlessly noticed that

Inkscape already supplies an

extensive list of ready-made

filters, grouped by type, that make

up the bulk of the Filters menu.

Whilst there are those gallant

masochists who dare to brave the

shortcomings of Inkscape's UI to

create their own complex filters

from scratch, many more users

simply work with the default set

provided. But with the knowledge

you've gained over the past few

months you can do better than

that: you can start with a standard

filter, but then dive into its guts to

edit and tweak it to suit your

needs.

I shan't spend any time going

exhaustively through the list of

default filters, but instead

encourage you to explore them on

your own. Try creating a test sheet

with some different objects and

groups to work on: some of the

filters work best on small objects,

others on large ones; some require

colorful content, others work just

as well with a monochrome shape;

some are wasted on intricate

outlines, whilst others fail just as

easily on featureless blocks of

color.

A useful ability of Inkscape is

that, when you copy and paste an

object from one document to

another any attached filters are

copied with it. Why not start a

“filter library” – a document into

which you copy any particularly

useful or impressive filters? Each

time you create or find a great

filter, just apply it to a suitable

object, then copy and paste it into

your library file. Similarly, when

you want to use a filter from the

library, just copy the object from

the library file and paste it into

your current creation. The filter

will appear in the filters dialog,

and, once you've applied it to

something else in your image, you

can safely delete the object you

pasted in. Other users have already

posted their own filter collections

online – search for “Inkscape filter

pack”, for example – so you might

find that someone else has already

created just the filter you need,

and it's only a copy and paste away

from being used in your drawings.

When constructing your own

filter chains from scratch, there's

never really a question about what

happens when you combine two

primitives. You want a blurring and

desaturating filter? No problem,

just chain a Gaussian Blur primitive

with a Color Matrix primitive (in

Saturate mode). But what happens

when you want to do the same

with the default filters? There's an

ABCs > Simple Blur (which consists

of just a Gaussian Blur primitive)

and also a Color > Desaturate filter

in the menu (which provides a

single Color Matrix primitive).

What happens when you add both

of them to an object? If you try it,

you'll see that you get a blurred,

desaturated result, so it is possible

to combine the default filters in

this way. But there's something

odd going on in the filter chain. We

don't have just the two primitives

we might anticipate, but also a

third one: an additional Color

Matrix between the two primitives

we expected.

If you look closely you'll see

that it's not even connected to the

last primitive, so plays no active

role in this chain. You can delete it

entirely and it won't have any

effect. So why is it there?

full circle magazine #1 1 7 36 contents ^

Mark uses Inkscape to create three
webcomics, 'The Greys' , 'Monsters,
Inked' and 'Elvie' , which can all be
found at
http://www.peppertop.com/

HOWTO - INKSCAPE
I t turns out that this is actually

a rather nice addition on the part

of the Inkscape developers. Let's

suppose you want to add another

filter to this chain, but it's one that

would normally use Source Alpha

as an input. To prevent any

unexpected results, you need it to

use the alpha from the previous

filter output, which will usually not

be the same as the Source Alpha at

all. These extra Color Matrix

primitives act as intermediate

alpha outputs within the chain. So

with the addition of these, you can

not only link any new primitives

into the image output of each

filter, but also to its alpha output

as well.

It's impressive that you can

combine filters in this way and

have them work as expected, but it

can quickly lead to long, complex

and hard to manage filter chains.

Often a better approach is to apply

one filter, then group your object

before applying the next filter to

the group. You can repeat this as

often as necessary, creating ever

deeper nesting of groups, each

with its own filter applied. This

certainly makes it easier to

manage them in the filters dialog,

as there's far less confusion about

which filter you're modifying,

especially if you name them well.

One final thing to note is that,

in 0.91 (and the just released

0.92!) , many of the default filters

now have an ellipsis (three dots,

“…”) after their name. Choosing

one of these opens a dialog which

lets you enter parameters for the

filter, and even see a live preview.

Of course this is just a shortcut to

setting parameters in the

individual filter primitives, but is a

welcome addition that can expose

the most important parameters

from across a number of

primitives, whilst hiding all the

other options and settings that

aren't relevant in most cases.

Unfortunately, there's no way to

get this simplified UI back once

you've dismissed it, so any

subsequent tweaks will mean

diving into all the gory details of

the individual primitives again.

Some of the separate filters from

0.48 have also been dropped, since

the new parameterized filters can

achieve the same effects and

more. If you can't find an old

favourite filter in the newer

releases, look for a similar name

with an ellipsis, and start tweaking

the parameters!

FCM POLL

I 've set up a poll which Ihope you'll fill in. It's

located at:

https://goo.gl/Q8Jm4S.

We're interested in what

you like/dislike about FCM.

What I can change/add, and

anything else you want to

add.

We'll publish the results in

a future issue.

LINK: https://goo.gl/Q8Jm4S

http://www.peppertop.com
https://goo.gl/Q8Jm4S
https://goo.gl/Q8Jm4S

	Volume Eight Parts 50-57
	Inkscape - Part 51
	Inkscape - Part 52
	Inkscape - Part 53
	Inkscape - Part 54
	Inkscape - Part 55
	Inkscape - Part 56
	Inkscape - Part 57

