
THE INDEPENDENT MAGAZINE FOR THE UBUNTU LINUX COMMUNITY

SPECIAL EDITION

 Volume Volume TwoTwo

Full Circle

Full Circle Magazine is neither ailiated, with nor endorsed by, Canonical Ltd.

 Issue 26 - 50 Issue 26 - 50

 Command Command

 & &

 ConquerConquer

full circle magazine #26 5 contents ^

B efore I get into any
new topics, I'd like to
take a moment to
thank reader Harold

De Bruijn for pointing out the
existence of
(http://pacpl.sourceforge.net/),
and the fact that it supports
the converting of tags. It's also
in the Ubuntu repositories. This
can be used instead of ffmpeg
in the m4a function I explained
in the past issue, since it saves
the tags in the newly
converted format.

Now, back to this month's
article. When you mention the
command line, most people
think of complicated
commands, or black terminals
with white (or often green) text
scrolling huge amounts of text.
Or they think of apt-get,
aptitude, elinks, etc, since they
are widespread applications
and very commonly used.
However, how many people
think of MOC (Music on
Console), or irssi (IRC client)?
Both programs are CLI-based,
and are very useful (and

lightweight, if that's what
you're going for). Tired of
having your music stop playing
when your Xserver dies (or you
turn it off)? MOC will continue
playing music since it runs as a
CLI server, or you can run it
from a tty screen without any
kind of X. Or has your Xserver
died and you need help to fix
it, but don't have any way to
ask anyone? Irssi will let you go
on IRC (so you can visit
#ubuntu on freenode, for
example). Not only are these
applications useful for when
you are without a GUI, but they
also are extremely
customizable (colors, extra
functions, etc). I, for example,
use a script to pull the
information from MOC into
conky, but you can also write a
script that is executed at the
end of a song to display the
new song title and place it in a
text file (for more real-time
updates).

First, let's start with MOC. To
install moc run the following
command:

sudo apt-get install moc

Once the program is
installed you can open it by
running:

mocp

The default view will be, on
the left side, a file browser, and
on the right side will be the
playlist (empty for now). Use
the Tab key to switch between
the file browser and the
playlist. From the file browser
menu you can browse to your
music folder. If you want to add
all your music at once, just hit
Shift+a, so that it adds the
directory to the playlist, hitting
just 'a' will add the currently
selected file. Once it loads all
the music and tag information,
you should have a nice list of
your music. But wait, what if I
want to play one specific song,
do I have to scroll through this
all? Simple answer? No. If you
hit 'g' and then type the name
of an artist, song, etc, it will
filter the results in the playlist,
and you can highlight the

correct result and hit Enter to
play it. You can use the file
~/.moc/config to specify a
beginning layout, and if you
want shuffle on or off, repeat,
etc. I won't go through the
almost endless list of options
(because, well, I have no idea
where to start, there's just so
much), my ~/.moc/config file
can be seen at:
http://fullcirclemagazine.org/mo
c-config/

g – search
space bar – pause/play
enter – choose/start playing
selected file
tab – switch between file
browser and playlist
n – next song
b – previous song
C – clear playlist
A – add folder recursively to

COMMAND & CONQUER

most people think of

complicated

commands, or black

terminals...

http://fullcirclemagazine.org/moc-config/
http://pacpl.sourceforge.net/

full circle magazine #26 6 contents ^

 has learned all he knows
from repeatedly breaking his
system, then having no other
option but to discover how to fix
it. You can email Lucas at:
lswest34@gmail.com.

COMMAND & CONQUER
playlist
a – add file to playlist
s – shuffle toggle
h – help menu

IRSSI
Now, on to irssi. To install

this program run the command:

sudo apt-get install irssi

(starting to see a pattern
here?). Once it's installed you
can run it with:

irssi

Once the program opens
you're greeted with a pretty
blank screen. To start, you will
want to type:

/connect irc.freenode.net

(or substitute the server with
any other one you'd like to
connect to). Once you're there,
if you know where you want to
go, type:

/join #ubuntu

(Or, again, any other channel).
If you join multiple channels,
you'll see a list just above the

input field. If you want to go
from window-2 to window-1, for
example, hit meta (usually the
windows key, but ESC works as
well), and 1 to get to the first
screen. Or, if you want to see
both at once, you can enter

/window show 1

which will display the first
screen with whatever screen
you had running before. There
are so many controls and
commands and options that I
can't cover them all here, but
they are explained fairly well
on the actual website (see the
Further Reading section for a
link). One last thing I will cover
are themes, since they are
usually pretty interesting. First,
find (or write) a theme to your
liking, and then copy (or
create) the file in the folder
~/.irssi/ (something like
“rainbows.theme”). Once you
have created the theme (or
copied it), you can then set the
theme in irssi using the
command

/set theme <theme name>

where <theme name> is the
name of the file (minus the

.theme extension), so it would
be

/set theme rainbows

for the example I gave above.

/connect <server URL> -
connect to a server
(Freenode, DALnet, etc.)

/join <channel> - connect to
a channel (#ubuntu,
#kubuntu, etc.)

/quit – quits irssi

/disconnect – disconnect
from server

/part <parting message> –
leaves the channel (the
parting message is optional)

I hope this article will have
intrigued you to try out a few
CLI programs. They are
extremely lightweight, flexible,
and fun to play with! I would
especially recommend trying
them out with a tiling window
manager if you want to be as
lightweight as possible.
Something like Xmonad,
Awesome, etc. is always a
good experience to try out -
especially if you're fond of

coding and CLI apps. I find it
the best environment for both.
Even if you're not planning on
using these programs, I'd
recommend having at least
irssi around in case you need
access to help without a GUI
being available.

MOC - http://moc.daper.net
irssi - http://irssi.org

http://moc.daper.net
http://irssi.org
mailto:lswest34@gmail.com

full circle magazine #27 5 contents ^

F or this month's
Command & Conquer
article, I'll cover a few
things that are

sometimes mentioned online
with instructions, or things that
aren't enough for an entire
article on their own, but should
still be mentioned. I hope that
this information is useful for
those readers who want to do
more with their shell, or who
want to customize it, yet
occasionally run across a term
that they don't know.

I'll begin with prompt
customization. Say you've
spent a long time finding a
prompt for your terminal that's
to your liking, and you've
finally gotten all the escape
characters set and you're
ready to try it out. This is my
.zshrc PS1:

export
PS1="%{$fg[blue]%}┌^
72;[%{$fg[green]%}%n%{$fg[cya
n]%}@%{$fg[green]%}%m%{$fg[bl
ue]%}:%{$fg[magenta]%}%~%{$fg
[blue]%}]-
%{$fg[red]%}[%{$fg[cyan]%}%*

on
%D%{$fg[red]%}]%{$reset_color
%}%{$reset_color%}"$'\n'"%{$f
g[blue]%}└─>%{$re
set_color%} "

which looks like the image
below.

You have two ways to do
this:
1) you can open a new terminal
and view the shell (which, if
you're running in a tty session,
or are doing too much at once,
or hate changing shells before
you're finished, isn't a great
option) or
2) you can “source” it. I prefer
option #2 since it takes
immediate effect in the original
terminal, and is fairly simple to
do. It is done by using the
command “source” followed by
the path (or name, if it's in
your current working directory)
to the configuration file
(.bashrc in this case).

source .bashrc

This command works with
most configuration files that

you could edit, but there are
some cases where it won't do
anything at all (I can't say I
know all possible uses of it, so
you will have to try for
yourself).

Another useful thing to
know is that you can use while
loops and the like in the actual
shell too. For example, if you
wanted to list all the files in a
directory and insert it into a
different line of code, you could
do this:

ls|while read line; do `cat
${line}`; done

Of course, you will get an
error message if you run into a
directory, but that can be
solved with a simple check
(using an if statement). This,
however, I will leave to you.

A couple of other useful
commands that I find myself
using a lot are:

df

which displays filesystem
usage (I usually use it with the
“-h” argument, so that it
displays in Gigabytes).

watch

which runs a command once
ever 2 seconds (by default, but
can also be changed with “-n
<num>” argument).

scrot

which is essentially a
command-line based
screenshot tool, but with a lot
of options and possibilities (see
the manpage for more info,
there are too many options to
cover here).

And, of course, the other
commands I've covered in the
past months are also
frequently used, but the 3
above haven't been mentioned

COMMAND & CONQUER

full circle magazine #27 6 contents ^

 has learned all he knows
from repeatedly breaking his
system, then having no other
option but to discover how to fix
it. You can email Lucas at:
lswest34@gmail.com.

COMMAND & CONQUER
before, and are useful. One last
thing I want to cover in this
article is what a tiling window
manager is, since quite a few
coders I know prefer them over
normal window managers. A
tiling window manager is a
window manager that arranges
all windows in “tiles” (re-sizing
so that all windows fit into the
space, and so that windows
don't overlap). Some (not all)
tiling window managers offer a
“floating” mode, where
windows act like they usually
do (set size, overlapping, etc.).
The reason why coders (myself
included) prefer this behaviour
is because it lets you view all
your code at once, or to have
multiple scripts open at the
same time so that you can
switch easily, or so you can
have one terminal open to test
commands and another to
write the script. Not only that,
but you can control the window
manager using only the
keyboard, allowing for faster
working, since you never take
your hands off the keyboard. A
few such window managers are
AwesomeWM, DWM, Xmonad,
ratpoison, and ion. I use
Awesome, since it offers a
floating mode that isn't always

on top or always below, but can
be both (Xmonad seems to
offer only one or the other out
of the box, and I couldn't find a
work around). However, there
are lots of options, and most
are well documented, in case
any reader feels like giving one
a go.

 -
http://awesome.naquadah.org/

 -
http://www.xmonad.org/

 -
http://www.nongnu.org/ratpoiso
n/

 -
http://modeemi.fi/~tuomov/ion/

 - http://dwm.suckless.org/

 is an open-source,
Web-based, professional,
groupware application that
facilitates the organization of all
your personal information. There is

no need to install additional applications on your computer, for all
the required components are installed on the Web server. One needs
only an Internet connection and a Web browser with JavaScript
enabled. Live-Office can be accessed on our server, or easily
installed on your server. All your personal data will be centralized
and securely stored in our, or your, online database, which will offer
various modules and widgets that provide you with the ability to
save all your personal data in one place. Events, ToDos, Contacts,
Favorites, Documents, and Notes are a few examples of these.
These modules and widgets can be accessed easily via a high-end,
intuitive, user interface. This unique key feature helps you to gather
and visualize all your information at the same time. For example,
you can open your organizer and address book side by side, add a
personal contact in your address-book window, and add a meeting in
your organizer window.

With Live-Office, you can customize your user experience. You don't
like blue as your background desktop color? Change it to a
wallpaper. You prefer using applications in your native language?
Live-Office comes with multi-language support.

We will soon be adding new modules and widgets, such as Budget
and Billing, and Password reminder, as well as new languages. In
addition, we are currently working on Live-Office Desktop Edition -
an off-line version built in Java.
This version will let you manage
all your personal data off-line and
synchronize it when needed.

Contact us or visit our website to
know more about how you can
contribute to Live-Office:
info@live-office.net or:
http://www.live-office.net

mailto:lswest34@gmail.com
http://awesome.naquadah.org/
http://www.xmonad.org/
http://www.nongnu.org/ratpoison/
http://modeemi.fi/~tuomov/ion/
http://dwm.suckless.org/
mailto:info@live-office.net
http://www.live-office.net

full circle magazine #28 5 contents ^

R ecently a reader had
requested that I cover
the basic layout of a
help or man (manual)

page. For the benefit of this
article, I will focus on the 'help'
and 'man' pages for the “ping”
command. The command:

ping -h

will display the help command
for ping (the “-h” switch, along
with the “--help” argument, are
the defacto default). The help
information will look something
like what is shown in the box
above right.

The first square brackets
containing “-LRUbdfnqrvVaA” is
a list of possible switches that
don't require arguments
(mainly because they format
output), and for an explanation
as to what any of these
switches does, it's required to
check the man page as well.
The next series of square
brackets that show a switch
and value combination (e.g. “-c
count”) requires you to

substitute the
“count”
section with
an actual
value. The
words are
intended to
give you an
idea of what
the switch
does.

Ideally, the
help page is
intended as a
quick
reference, in
case you're
unsure what
switch
corresponds to
the input you wish to supply. If,
however, you're new to the
command and don't know what
half of the switches do, it's best
to read through the man page,
since it offers an explanation of
each and every switch, as well
as possible uses, help website,
etc. There are some help pages
that offer descriptions of
arguments and switches, as

well as more information, but
that isn't always the case.

To view the man page, use this
command:

man ping

The synopsis section displays
something similar to the help
command, but it is followed by
a description section, which

explains what the command is
intended to do, or intended to
be used for. The options
section lists all the switches,
and a short description of what
each does. To navigate through
the rest of the manpage, use
the up and down arrows, or
page up and page down. The
text on the very bottom looks
like this: “Manual page ping(8)
line 21/356 15%”. It tells you

COMMAND & CONQUER

Usage: ping [-LRUbdfnqrvVaA] [-c count] [-i interval] [-w deadline]
 [-p pattern] [-s packetsize] [-t ttl] [-I interface or address]
 [-M mtu discovery hint] [-S sndbuf]
 [-T timestamp option] [-Q tos] [hop1 ...] destination

 – number of ping tries
 – time between pings
 – maximum time to wait for reply

 – allows you to fill the ping with a pattern of bytes
 – defines the size of the packet to send

 – sets the IP Time to Live
 – Set the source IP or device

 – ''do'', ''want'' or ''dont'' are options
 – defines the size of the send buffer

 – allows you to set special IP timestamp options
 – sets the Quality of Service option (either decimal or hex value accepted)

 - can be a list of destinations

full circle magazine #28 6 contents ^

 has learned all he knows
from repeatedly breaking his
system, then having no other
option but to discover how to fix
it. You can email Lucas at:
lswest34@gmail.com.

COMMAND & CONQUER
that you are viewing the
manual page for ping, and are
at line 21 out of 356, or 15% of
the way through the
document. Once you're done
viewing the rest of the options
section, you come upon a
section named “ICMP Packet
Details”, which defines what
they are. There are a few more
definitions before you reach
the bug heading, but each one
is fairly well explained, so I will
not explain each one. The bugs
listed are currently open
(known bugs that haven't been
fixed in that version), and the
See Also: section offers a few
other commands to look at
that will be useful in
combination with the
command you are currently
reading up on. The history
section is straight-forward
enough, while security and
availability tells you a little
more about the command.

Not all man pages are laid out
in the same manner, but they
follow the same conventions,
which are:

Name
Synopsis
Description

Options
Useful information pertinent
to the command (definitions,
explanations, etc.)
Bugs
See Also
History
Security (if applicable)
Availability

This is useful in case you want
to look up a specific term from
the help page, since you know
exactly where to go. Also, if
you ever write your own tool,
or would like to add a man
page to a script you wrote, you
then know how to format it.
Hopefully this article has
helped you to get a better
understanding of how
manpages work, and how to
make sense of the often
confusing help pages.

mailto:lswest34@gmail.com

full circle magazine #29 5 contents ^

H ave you ever found
yourself tapping an
extra key on your
laptop, only to

realize that it isn't bound to
anything, and then finding out
that the shortcuts program
doesn't recognize the key?
Well, I ran into a similar
problem when setting up
Openbox on my netbook, and
so I thought I would show you
how to bind keys to functions,
even if it seems that they are
not recognized.

Step One: Key
Recognition

First we need to find out if
the key is recognized by the
kernel. Open a terminal and
run the command:

xev | grep -A2 --line-
buffered '^KeyRelease' | sed
-n '/keycode /s/^.*keycode
\([0-9]*\).* (.*,
\(.*\)).*$/\1 \2/p'

This will output the keycode
followed by the keypress name

(XF86AudioMute,
XF86MonBrightnessDown, a, b,
and so forth). If it displays
NoSymbol after the keycode,
there is no keypress bound to
that keycode yet, and you can
skip to step two. If neither the
key returns nothing, it is time
to try showkey.

Switch to tty0 (by hitting ctrl
+ alt + F1) and log in as your
user. Once logged in, enter the
command:

showkey

This program will return
keycodes of keys pressed, and
automatically quit 10 seconds
after the last keypress. Once
the command is run, hit the
key(s) you want to test, and
record any keycodes that it
returns. If neither of these
options returned a keycode, it's
time to see if the key has a
scancode.

To do this, press the key you
want to test, and then check
dmesg with:

dmesg|tail -5

If something like this
appears in the dmesg output -

atkbd.c: Unknown key pressed
(translated set 2, code 0xf1
on isa0060/serio0).

atkbd.c: Use 'setkeycodes
e071 <keycode>' to make it
known.

- you can map the scancode to
a keycode. You can do this by
either using HAL or
setkeycodes (kernel tool), as
shown in the dmesg output.
The further reading section at
the end of this article offers a
link to HAL's keymap quirks
page. I will not go into detail in
the article, since it is quite rare
(in my experience) that it is
necessary to do this.

Step Two: Binding
Keycodes

I will focus on binding
keycodes to keys in Xorg, since
most multimedia keys aren't

required in the tty0 console. To
start, you must create the
.Xmodmap file. This can be
done by using the touch
command, or just editing it in
gedit and then saving the file.
Entries in the file should be in
this format:

keycode <Xkeycode> =
keysymbol

A few examples would be as
below:

keycode 153 =
XF86MonBrightnessDown

keycode 154 =
XF8MonBrightnessUp

Step Three: Testing
Keycodes

First run the command:

xmodmap ~/.Xmodmap

Then you should be able to
add the keys to whatever
function you need. If not,
revise the keycodes and
keysymbol names, just in case

COMMAND & CONQUER

full circle magazine #29 6 contents ^

 has learned all he knows
from repeatedly breaking his
system, then having no other
option but to discover how to fix
it. You can email Lucas at:
lswest34@gmail.com.

COMMAND & CONQUER

you made a typo. A full list of
symbols can be found here:

 /usr/include/X11/keysymdef.h

And for extra function keys:

 /usr/include/X11/XKeySymDB

Once you have ensured that
the keys work, continue to step
four.

Step Four: Making It
Permanent

To make the changes
permanent, you have to run
the xmodmap command every
time you log in. I would
recommend adding it to your
.xprofile.

An alternative tool to
xmodmap is xbindkeys, and it
is fairly straightforward. There
is a GUI available called
xbindkeys_config, but I'm not
sure if it's in the Ubuntu
repositories.

HAL keymap quirks:
http://people.freedesktop.org/~
hughsient/quirk/quirk-keymap-
index.html

QUICK REVIEW - PREY
In the world of the first person shooter (FPS)
video game there is very little innovation.
Most of the time a new FPS game will have
elements that made older, or previous,
games in this genre a success.

That is not the case with Prey. Prey is
unique. Prey is different from anything you
have played before. Recently ported to Linux, this old favourite of mine is
now enjoying a new lease on life.

You play a Cherokee warrior named Domasi Tawodi (a.k.a Tommy), a man
who wants to leave his Cherokee heritage in the past, leave the
Reservation and move on into the civilized world, but there is one problem:
his girlfriend Jen wants to stay, because it is her home. All of a sudden,
while they are talking about it in a bar, it gets ripped up by an alien ship
taking him, Jen and his grandfather onto it so its inhabitants can feed on
them.

Obviously, Tommy would not give up his life so easily, so he tries to rescue
his Grandfather and girlfriend.

One thing that makes this game outstanding (apart from the fact it uses a
heavily modified Doom 3 engine) is its use of gravity (if you take a look at
some of the screen shots you'll see why) and portals (which makes it very
possible to shoot yourself if you don't know what you are doing). These
are used in a number of short and long puzzles, but nothing the average
part-time gamer can get stuck on. Another aspect of the game I loved was
the fact after a certain point in the game you cannot die. You read it
correctly, 'you cannot die' so you will no longer 'die' then quickly press
your quick-load key then try again with a miniscule amount of health. I
don't want to give away too much about this game other than the fact that
it is awesome.

Ten years plus in development and this is what we get: a really slick game.
It is one of the few examples of the modern video game that I think will go
down in the record books as a definite classic.

mailto:lswest34@gmail.com
http://people.freedesktop.org/~hughsient/quirk/quirk-keymap-index.html

full circle magazine #30 5 contents ^

I recently got back from my
summer vacation, and,
after roughly 300
packages were updated, I

noticed in conky that the root
partition was getting to be
pretty full. So, I thought that it
might be useful to write an
article on a few tips I have
picked up over the years that I
use when a hard disk gets full.

Starting off, we'd most likely
need to check to see how
much space is left on the disk.
To do this, I use the command-
line tool “df”. This check can
also be done in gparted, but I
will focus on the command-line
aspect. So, down to business.
In order to see a list of all
mounted filesystems and their
usage, use the command:

df -h

This will print out a list of
mounted partitions, how much
space is used, how much is
free, the percent used, and the
mount point. I think it's fine to
use a disk up until it's 90% full

(your home folder can usually
safely be at around 95%). The
root partition requires some
space to be left free for logs,
root folder, and so forth, and
will warn you when it gets
“full” (all the space is used up
except for what is set aside for
logs). This generally means
you can't install any more
packages or move any files
around, which we don't want. If
you find you can't free up
sufficient space, you may need
to re-size the partition itself in
order to get enough space. I
generally am fine with about
10GB for my root partition (my
home partition is generally
25GB or more).

If the root partition is the
one getting full, your first step
should be to clear out extra
cached packages (aptitude, apt-
get, and synaptic all store
downloaded packages in the
cache so that it doesn't need to
re-download them if you re-
install the package). Open a
new terminal window (leaving
the output of “df -h” visible),

and run

sudo aptitude autoclean

or

sudo apt-get autoclean

to clear out all packages
from the cache that are no
longer downloadable (read: out
of date). Once it's completed, I
then run “df -h” again in order
to check to see how much
space was freed. If it has freed
up enough space, I leave it at
that and move on. If, however,
it freed up hardly any space,
and you run Ubuntu without
the backports repository, beta,
or lots of cutting-edge
packages, you could likely get
away with clearing out all
cached packages. I used to do
this before I switched to Arch,
since Ubuntu tests the
packages thoroughly and
leaves the stable ones in the
normal repositories. If,
however, you use getdeb
repositories or such, I
recommend not doing this in

case you find an issue that
causes you to downgrade.
However, do not do this
regularly, simply because you
may one day need the cached
package again for whatever
reason. You can clear out all
packages from the cache by
issuing:

sudo aptitude clean

or

sudo apt-get clean

As a side note, the reason
why I list both aptitude and apt-
get commands is simply
because I prefer using aptitude
for my cleaning purposes, and I
haven't used Ubuntu for a
while, and as such don't know
if apt-get does it similarly now
or not.

So, after clearing out the
packages you should now have
a bit of extra space. If you still
need some space, or the root
partition wasn't the one that
needed more free space, you

COMMAND & CONQUER

full circle magazine #30 6 contents ^

 has learned all he knows
from repeatedly breaking his
system, then having no other
option but to discover how to fix
it. You can email Lucas at:
lswest34@gmail.com.

COMMAND & CONQUER
can list your files and folders
by size, and manually delete
large files you no longer need
(old .ISO files, archives, icon
themes, untarred archives,
etc.). I picked up this trick from
Linux Journal (not sure which
issue anymore) -- it works well.
First, if you have both root and
home on a separate partition
and you want to free up space
on the root partition, do the
following:

cd /
du -ckx|sort -n

What this does is first
change the directory (cd) to
your root partition, and then
display disk usage (“du”) with
size blocks of 1kb (“-k”), and
display a grand total (“-c”) for
the partition (no changing to
the home partition, etc.). This
will all be sorted from smallest
to largest (so the last file listed
is the largest) due to the “sort -
n” command we pipe the du
output to. I don't recommend
deleting anything from the root
partition without thorough
investigation of what it is
(unless it's the cache of a
program you no longer use,
when it should be safe to

remove -- but again, it's best to
check first). This is simply due
to the fact that you can cause
serious system errors by just
deleting away. Secondly, if you
want to display information in
your home partition/folder, you
can run the following command:

cd ~
du -ck|sort -n

This will show the size of all
folders and files within your
home folder, sorted from
smallest to largest. Once you
find out which are the largest
folders, you can find out what
size the folder is (in KB/MB/GB)
by running:

du -h ~/<foldername>/

The “-h” switch stands for
human-readable. Also, the tilde
(~) stands for
/home/<username>/ (saving
you some typing), and you
need to replace the
“<foldername>” with the
actual name of the folder you
want information on. Once
you've found out which folders
and files are hogging all the
space, you can choose to
delete the ones you no longer

need (or to backup the ones
you want to keep, but don't
use, to a different storage
medium). After all this, you
should have freed up a bit of
space, and can continue to
install packages!

I highly recommend going
through a list of installed
packages at some point
though, and deciding if you
wish to get rid of some you
don't use. This can be done,
quite simply, with aptitude
(since it shows an “i” if the
packages are installed). Run
the command:

sudo aptitude search '~i'

or

sudo apt-cache search '~i'

A quick note on the apt-
cache command: I am not sure
if it actually works in the same
way aptitude does. Also, before
uninstalling any packages you
don't recall installing, check
first! It may very well be a
package Ubuntu requires.

I cannot stress enough to be
extremely careful in what you

delete or uninstall, especially if
you're not sure what it is. It's
always better to be safe than
sorry.

I am open to requests on
articles, so if you run into a
command-line issue you think
others might be experiencing,
drop me an email with the
issue, and I may write an
article on it. The submitter will,
of course, get credit, unless
specified..

Apt-get cheat sheet:
http://www.cyberciti.biz/tips/linu
x-debian-package-
management-cheat-sheet.html
Aptitude search '~i' info:
http://www.linuxquestions.org/q
uestions/debian-26/aptitude-
how-to-get-a-list-of-all-installed-
packages-
458119/#post2310207

mailto:lswest34@gmail.com
http://www.cyberciti.biz/tips/linux-debian-package-management-cheat-sheet.html
http://www.linuxquestions.org/questions/debian-26/aptitude-how-to-get-a-list-of-all-installed-packages-458119/#post2310207

full circle magazine #31 contents ^

B efore I start on the
focus of this article,
I'd like to take a
moment to thank

David Rowell for pointing out
that another space-waster on
some systems is the
thumbnails directory (this
applies only to systems where
thumbnails are generated). In
Ubuntu, the default directory is
~/.thumbnails. I believe,
however, that Thunar (on
Xubuntu) stores it in a different
location - the same is so for
Konqueror on Kubuntu. The
thumbnails don't get removed
once the image/video that the
thumbnail applies to is
removed, at least, this was the
case in Gnome 2.24/2.26. So, if
you store/stored a lot of media
on your hard disk, chances are
the thumbnails folder can be
rather large. To solve this,
simply delete the directory with

rm -r ~/.thumbnails

and the next time you open a
folder with media in it, the
thumbnails will be

regenerated, which could take
a few minutes (depending on
the number of files and the
CPU of your system). If you're
not sure how big the
thumbnails folder is, you can
check using my tip from last
month's article:

du -h ~/.thumbnails

Now, on to the topic of this
month's article. I know many
people use Ubuntu, or another
form of Linux, on notebooks
these days, and so I thought it
could be useful to cover how to
disable power management for
hard disks, which can cause a
lot of wear and tear on
notebook drives. There are
threads on most distributions'
forums regarding this issue,
and, as far as I know, it hasn't
been solved. The downside of
this fix is that the hard drive
doesn't spin down. This can
cause data loss if the laptop is
dropped (especially if the hard
drive is in the process of
writing), and can also cause
your laptop to be a few

degrees warmer, since the
hard drive generates heat. The
positive aspect of this is that
the hard drive will last much
longer than it will with the
power management on, and
the hard-drive performance will
increase a little. I will be
covering how to see if your
laptop is affected by this bug,
and how to disable power
management. Also, I'll cover
how to use smartmontools to
check the health of your hard
disk.

Before we start checking
any values, you must first
install the tool we'll be using.
Smartmontools is in the main
repository of most
distributions, including, of
course, Ubuntu. To install it,
run the following:

sudo apt-get install
smartmontools

Once it's installed, you
should probably check the
S.M.A.R.T. (Self-Monitoring,
Analysis, and Reporting

Technology) values of your
hard drive by running the
following command:

sudo smartcl -H /dev/sda

You should replace /dev/sda
with whatever hard disk you
want to check. This will return
information in the following
format:

smartctl version 5.38
[x86_64-unknown-linux-gnu]
Copyright (C) 2002-8 Bruce
Allen
Home page is
http://smartmontools.sourcefo
rge.net/

=== START OF READ SMART DATA
SECTION ===
SMART overall-health self-
assessment test result:
PASSED

As you can see, my laptop's
SMART hasn't been tripped
(meaning the hard disk's
health is fine). If it says the
hard disk didn't pass, you may
want to think about replacing it
in the near future. If it says
your hard disk doesn't support
SMART, then you can stop

COMMAND & CONQUER

full circle magazine #31 contents ^

COMMAND & CONQUER
worrying, since you will be
unable to change any of the
settings.

Before proceeding to the
next section, I will take a
moment to note that you
should read the link to the
UbuntuForums thread below
before applying any of these
fixes, since it should be done
only when you have a good
understanding of what is
happening. Also, you have to
take into account the period of
time you've had the hard disk,
etc. If you choose to follow the
information in this article, you
are doing so at your own risk. I
am writing this article from the
experience that most laptops
I've used have required this fix.
This experience includes
explaining the steps of this fix
to laptop owners. Be advised
that some newer laptops may
not need this fix, and may
even suffer a shorter hard-
drive life if it is applied to
them. The Web has lists of
laptops that suffer the power-
management problem. These
can tell you whether other
owners of your laptop model
have reported this problem in
their machines.

In order to check the start of
the Load_Cycle_Count, type the
following command:

sudo smartctl -a
/dev/sda|grep
Load_Cycle_Count @

This will spit out one or two
lines of code that look like this:

225 Load_Cycle_Count 0x0032
099 099 000 Old_age Always -
14091

The first number is the ID#,
the name is the
ATTRIBUTE_NAME, the
hexadecimal string is the FLAG,
the first value (099 here) is the
VALUE, the WORST is the next
099, the 000 is the THRESH,
the Old_age is the TYPE,
Always refers to UPDATED, the
“-” is in the WHEN_FAILED
column (would be a date, if the
hard disk failed), and the
14091 is the RAW_VALUE. Now,
I'll explain what some of these
terms are. The VALUE is the
SMARTCTL percentage-type
value. The WORST is the lowest
stored value in the life of the
hard disk, and the THRESH is
where SMART decides that the
hard disk is failing (so once

VALUE reaches 000, it's failing).
The TYPE refers to the type of
THRESH (choice between Pre-
fail, where it warns you before
the hard disk fails, and
Old_age, where the hard disk
will have simply run the course
of its life). UPDATED is how
often/under what conditions
the attribute is updated,
WHEN_FAILED shows the date
at which the attribute passed
the THRESH level, and the
RAW_VALUE is how many times
it actually occurred.

Anyway, record your
RAW_VALUE somewhere for
safe keeping, and check the
value again at a later date. The
best way to check would be to
write a simple script to run as
root in CRON once a day at the
same time to give you an idea
of how often it's increasing. You
can also, however, check
manually how much it
increases in 5 minutes, etc. If it
increases by more than 5
increments in 5 minutes while
the laptop is being used,
chances are that it's not giving
you a proper value, and you
could then divide the
RAW_VALUE you have by the
increase (so if it's increasing by

10 each minute, divide by 10).
Once you have an idea of how
much it increases on average
(per day), you should then
calculate how much the value
will be in 3 years (average
lifespan of a hard drive), taking
into account, of course, how
long you have had the laptop!
If the value is under the
Load_Cycle_Count that the
hard disk should be able to
handle (it's generally around
600,000 but you should Google
your hard disk's Load_Cycle
limit just to be sure), then you

full circle magazine #31 contents ^

 has learned all he knows
from repeatedly breaking his
system, then having no other
option but to discover how to fix
it. You can email Lucas at:
lswest34@gmail.com.

COMMAND & CONQUER
will not need to worry about
the fix. If, however, it greatly
exceeds the limit, you should
apply the fix in order to keep
your hard drive running for as
long as possible. For example,
my Samsung n110 (running
ArchLinux) increases at a rate
of about 1 per minute, so per
day it's an increase of 1440,
1440*365=525600,
525600*3=1576800. I didn't,
however, account for the fact
that the laptop is about 4
months old. Since the number
is so large, I decided to not
bother finding a more-accurate
value, since it wouldn't make
too much of a difference. This
value is well over any
reasonable limit for hard disks,
so I've turned the APM option
off. In order to do this, run the
command:

sudo hdparm -B 255 /dev/sda

Or, if you want to just set it
on the lowest possible setting
(waits the longest period of
time before going into power-
saving mode) run:

sudo hdparm -B 254 /dev/sda

In case you ever want to

undo this, the default setting of
APM for most hard disks is 128,
so running

sudo hdparm -B 128 /dev/sda

will set the APM back to its
default setting.

This concludes most of what
I wanted to cover. If the fix
works for you and decreases
the Load_Count, then you may
need to add a script to run it on
boot up, but this is covered in
the thread I listed below. Also, I
urge any reader who isn't
100% sure that it's required on
their hard drive to read through
at least some of the thread, in
order to grasp a better
understanding of this process.

For those of you who are
wondering why I included this
information in an article after
warning the reader repeatedly
that it shouldn't be used
lightly, the answer is simple:
the smartctl command is
extremely useful. It can give
you lots of information about
your hard disk, and it can offer
you information on the status
of your hard disk's life. I added
the information about APM

simply because it uses a lot of
the commands that I use to
check hard-disk
life/information, and because it
is a useful thing to be made
aware of. I'm not saying
anyone should just follow the
instructions; I am making the
reader aware of the possible
issue, and offering a way to
check/fix it, in case she finds
it's necessary. If you buy a new
laptop/laptop-hard-drive once a
year, and are fine with it, then
chances are you won't need to
even consider this. That being
said, not many people will do
that. I hope the introduction to
smartmontools was useful for
everyone, and that the
explanation on the Load_Cycle
issue was useful for some
(hopefully, fewer than it would
have been a year or two ago,
but who knows?).

As the last note of the
article, I am, as always, open
to suggestions, questions,
comments, opinions, and
pretty much anything else to
do with the CLI. If you're a
reader who has any of the
above, feel free to email me at
lswest34@gmail.com. Be sure
to include the word “FCM” in

the title and refer to the title of
Command & Conquer in the
subject header (just to ensure
that I read it). I'd also like to
take a moment to point out
that this is my 10th Command
& Conquer article. Thanks to
anyone and everyone who has
been following this series since
I started writing it, after taking
over for Robert Clipsham.

Official Ubuntu thread on
load_cycle_count:
http://ubuntuforums.org/showth
read.php?p=5031046

hdparm manpage, accessed
with:
man hdparm

smartctl manpage, accessed
with:
man smartctl

mailto:lswest34@gmail.com
http://ubuntuforums.org/showthread.php?p=5031046

full circle magazine #32 contents ^

B efore I start on the
topic for this month's
article, I have to
admit to a mistake!

Reader Stefan Eike pointed out
that I missed out a “t” last
month, in the command:

sudo smartctl -H /dev/sda

So thanks to Stefan for
pointing that out, and sorry to
anyone who may have run into
issues with that command.

I got an email from
proofreader Brian Jenkins on
November 15th, offering his
opinion that an article
dedicated to GNU Screen would
be cool to see, since he had
started using it and felt it
extremely useful. So, Brian,
here's your article! I have to
thank him again for reminding
me of Screen, I seem to have
always managed to overlook it
when deciding on an article.
After he suggested this topic,
and I decided that it was a
great idea to write an article or
two about (I will most likely be

doing a follow-up article next
month with a bit more
information about Screen), I
decided I'd use Screen as much
as possible for the weeks that
followed, and to configure it as
best as I could - after all, you
can't write about a program
you never used!.

In this article, I'll focus on
installing, using (keybindings,
etc.), setting up a .screenrc,
and the pros/cons of Screen.
Next month's article will be
focusing on more advanced
uses of Screen (multi-user
sessions, Screen over SSH,
etc.). That way, everyone
should have the knowledge
required to understand the
next segment, and I can focus
more on the how and why
instead of the usage of Screen.
So, to begin with, what is GNU
Screen? GNU Screen is a
terminal multiplexer. In case
that means absolutely nothing
to you, a terminal multiplexer
essentially creates a series of
“virtual” terminals within a
terminal emulator/tty screen,

and these virtual terminals can
be attached/reattached in a
new terminal, or a different
account, etc. You may be
asking yourself: “Why not just
have two or more terminals
open?” Which works, and, I
have to admit, I am in the habit
of using multiple terminals, but
Screen offers you the ability to
have multiple virtual terminals
in a single screen session,
which act a bit like tabs (yes, I
know there are tabbed terminal
emulators as well). However,
Screen also allows you to
detach and reattach the entire
session (tabs included) in a
new terminal, in a different
account, or in a tty screen.

Of course, the best way to
find out what Screen is, is to
actually install and use it. In
order to install Screen on your
system, you can run this
command:

sudo apt-get install screen

Once it's installed, you can
get your first taste of Screen by

simply running it with:

screen

You'll notice that it opens...a
blank terminal? Screen looks
exactly like a terminal (if run
without
arguments/configuration), yet
you can see that it is actually
Screen by hitting C-a d (that is:
“ctrl + a”, and then “d”). You'll
now see the terminal you had
open before with a line that
reads:

[detached]

Which is simply telling you
that the screen session that
was started was detached, and
not killed.

Now, for a complete list of
keybindings for Screen, you'll
have to check the link in the
Further Reading section. A few
that I find myself using a lot
are:

Ctrl + a, d – detaches a
screen

COMMAND & CONQUER

full circle magazine #32 contents ^

COMMAND & CONQUER
Ctrl + a, 0-9 – switches to
that virtual terminal inside
a screen session

Ctrl + a, Ctrl + a – Toggles
to the previous window

Ctrl + a, Ctrl + c – creates
a new window with a shell
and switches to that.

Ctrl + a, k – kill current
window (close the window)

Once you've detached your
screen, you may be wondering
how to get it back. If you enter
the following command into
the terminal, you'll be
presented with a list of screens:

screen -ls

My list looks something like
this:

There is a screen on:

17153.pts-0.lswest-netbook
(Detached)

1 Socket in /tmp/screens/S-
lswest.

Or, if I enter the command
from within the screen session:

There is a screen on:

17153.pts-0.lswest-netbook

(Attached)

1 Socket in /tmp/screens/S-
lswest.

After seeing that list, you
may be a bit confused.
Essentially, it's listing the files
each screen sessions creates in
/tmp/screens/S-<username>/.
It also displays the state of that
screen (attached, detached,
etc.). In order to re-connect, or
“attach” a screen session, you
have to enter the command:

screen -r <name of screen>

So, for the example above,
the command would be:

screen -r 17153.pts-0.lswest-
netbook

Of course, we're lazy, and so
we'll stick to just using the
numerical ID (17153, in this
case). The ID should be
sufficient for accessing a local
screen session, however, I
believe the rest will be required
if you are somehow remotely
connecting to a session.

One slightly more advanced
thing to suggest, that people
might find useful, is to have a
screen window number in their
Bash or Zsh prompt (since I'm

an avid fan of Z-Shell). You can
do that by adding the
“$WINDOW” variable to the
prompt line, so that it displays
the value of the currently open
window (e.g. If you have 3
windows open in a screen
session, and you're in a shell
on screen 1 (it counts from 0,
so 1 would be the second one
open), the value displayed will
be 1). My prompt is set up
using the text shown below.

This is a Z-Shell prompt, so
it won't work for a Bash setup,
but it gives you an idea of how
I use it. Basically, the file
checks to see if $WINDOW

if [x$WINDOW != x]; then
 #┌─[5:lswest@lswest-netbook:~]-[15:21:07]
 #└─>
 export
PS1="%{$fg[white]%}┌─[%{$fg[cyan]%}$WINDOW%{$fg[white]%}:%{$fg[green]%}%n%{$
fg[cyan]%}@%{$fg[green]%}%m%{$fg[white]%}:%{$fg[yellow]%}%~%{$fg[white]%}]%{$fg[yellow]%
}-
%{$fg[red]%}[%{$fg[cyan]%}%*%{$fg[red]%}]%{$reset_color%}%{$reset_color%}"$'\n'"%{$fg[wh
ite]%}└─>%{$reset_color%} "
else
 #┌─[lswest@lswest-netbook:~]-[15:21:07]
 #└─>
 export
PS1="%{$fg[white]%}┌─[%{$fg[green]%}%n%{$fg[cyan]%}@%{$fg[green]%}%m%{$fg[wh
ite]%}:%{$fg[yellow]%}%~%{$fg[white]%}]%{$fg[yellow]%}-
%{$fg[red]%}[%{$fg[cyan]%}%*%{$fg[red]%}]%{$reset_color%}%{$reset_color%}"$'\n'"%{$fg[wh
ite]%}└─>%{$reset_color%} "
fi

full circle magazine #32 contents ^

 has learned all he knows
from repeatedly breaking his
system, then having no other
option but to discover how to fix
it. You can email Lucas at:
lswest34@gmail.com.

COMMAND & CONQUER
returns a value, and if so, it
displays it in the prompt,
otherwise it doesn't. The
commented sections display
the appearance of my prompt
for either option. I find it a
useful little thing to do when
using Screen.

The last thing to cover for
this month is the creation of a
.screenrc file, in order to
change defaults and settings of
Screen. My .screenrc file looks
like the text shown right (based
heavily off rson's .screenrc
from the ArchLinux forums).

The comment above
“hardstatus alwayslastline” is
an example of what the final
result looks like. All the other
commands are fairly well
commented. The resulting
screen looks the prompt below.

This is a basic .screenrc, and
it would take an article or two
to cover even half of what you
can do with those configs, so
I'll just leave the .screenrc as it

is with comments, and check
the further reading for a link to
a site that attempts to explain
all the possible settings for
.screenrc files.

The very, very last thing I
need to cover in this article is
how to quit screen. This can be
done two ways:

1. Ctrl + a, \ - quits screen and
kills all windows

2. close all windows except for
a shell, and then just type

exit

If anyone has any more
questions, or would like to
request an article covering an
aspect of Screen, feel free to
email me at
lswest34@gmail.com. The
same goes for anyone who has
article ideas of any sort, or any
questions about the CLI. I wish
everyone happy holidays, and
a good new year.

http://www.gnu.org/software/scr
een/manual/html_node/Default-
Key-Bindings.html#Default-Key-
Bindings – The manual page for
keybindings on the GNU
homepage.

http://www.math.utah.edu/docs/
info/screen_9.html – Short and
concise list of things for
.screenrc files, and Screen in
general

Screenrc - Screen config file
Author: Lswest
Created: 24-11-2009 16:08:50
#
#

General Settings

startup_message off # Disable startup message
vbell on # Give visual alert instead of sound
defutf8 on # Always use utf8

Hardstatus

backtick 10 1 300 "/usr/bin/updateCheck" # List number
of available updates

0 Zsh 1 IRC --INSERT-- No Packages to
Update
hardstatus alwayslastline "%{= dd}%-w%{+u}%n %t%{-}%+w
%=%{= dW}%h%{-}%20`%10`"

autostart screen sessions
screen -t Zsh 0 /bin/zsh
screen -t IRC 1 /usr/bin/irssi
#

mailto:lswest34@gmail.com
http://www.gnu.org/software/screen/manual/html_node/Default-Key-Bindings.html#Default-Key-Bindings
http://www.math.utah.edu/docs/info/screen_9.html
mailto:lswest34@gmail.com

full circle magazine #33 contents ^

N ow that we've
covered the
introduction to GNU
Screen last month,

we're ready to advance into
slightly more useful
configurations. I'll be covering
only a few aspects of Screen
that I use and find useful, but
they are by no means as
advanced as they get, nor are
they the only aspects worth
using in Screen. I'd be happy to
have readers send in their
favourite configuration/setting
for Screen. I can post them at
the start of Command &
Conquer each month, so that
we can learn something new
from them. The things I'll be
covering in this article are the
following: automatically
starting windows with
commands, using Screen over
SSH to daemonize commands,
sharing Screen sessions,
splitting the window, and the
benefit of Screen over TTY
screens or a normal shell. So,
lets get started and fire up our
Screen sessions, and our
.screenrc files!

If you were looking through
my configuration file last
month, you must have noticed
the following two lines at the
end of my .screenrc:

autostart screen sessions
screen -t Zsh 0 /bin/zsh
screen -t IRC 1
/usr/bin/irssi

The lines there add a new
window (the number after the
title) to Screen with the title
(specified after the “-t” flag),
and the following command.
So, the .screenrc launches
Screen with window 0 running
my Z-shell, with a title of
“Zsh”, and window 1 with irssi
running, and a title of “IRC”.
Screen will default to the
newest window, so my Screen
sessions always start in IRC,
since that's what I'll most likely
use. I don't know if there is a
limit to how many windows
Screen can have, but I would
recommend not having more
than the number of shortcuts
to quickly switch between
them (so a maximum of 9

windows). This feature is
especially useful if you're the
kind of person who regularly
uses certain CLI-based
programs (mutt, irssi, midnight
commander, etc.), and want to
have them readily available in
one easy-to-access window
without opening a horde of
terminals.

If you're an SSH user, you've
probably run into the problem
where you access a machine,
and run a command, and you
end up losing your connection,
and then frustrate yourself by
having to re-run the command
since you lost the output. This
is why I, personally, feel that
Screen (or another terminal
multiplexer) is a must for any
SSH users who will be
connected for longer than a
few minutes, and who may
need to run more than one
command. Even if you're one
of those one-command and a
few-minutes users, Screen
might still be a very useful
thing for you. If you connect
via SSH, and run Screen, you

can set up the commands to
run, detach the Screen, and
disconnect from the SSH
server. If you want to re-
connect and get the info back,
all you have to do is re-attach
the Screen session. I
recommend detaching before
disconnecting from SSH, but
Screen should automatically
detach and keep the Screen
running when the connection
closes. This is useful for system
administrators who may need
to run a script to update
permissions or whatnot, and
will save them the need to
send the process to the
background, or to keep the SSH
connection open the entire
time. If I remember correctly,
you can even configure the
SSH shell to automatically run
Screen for any SSH login,
meaning you're always going
to be in a Screen shell.

Another extremely useful
feature of Screen is the ability
to share sessions. This is great
if you're editing a script and
need input from another user.

COMMAND & CONQUER

full circle magazine #33 contents ^

 has learned all he knows
from repeatedly breaking his
system, then having no other
option but to discover how to fix
it. You can email Lucas at:
lswest34@gmail.com.

COMMAND & CONQUER
You can allow them to SSH to
the box, and share the screen.
To do this, the host (first user),
has to do the following:

Ctrl + a
:multiuser on

The Ctrl +a is the actual
keyboard combination, and you
have to then type “:multiuser
on”. You then need to allow the
remote user to connect to the
Screen session with the
following:

Ctrl +a
:acladd <ruser>

Substitute “<ruser>” with
the username for the remote
user. Once you've done that,
the remote user can connect to
the Screen session using:

screen -x $USER/<screen
ID/name>

You need to replace $USER
with the username of the
original user (the “host”), and
the Screen ID/name with the
name or ID of the Screen
session the user started. If you
want to know how to set a
Screen name, I'll be adding a
few quick tips at the end of the

article on securing Screen, and
adding names to Screen
sessions to make management
easier.

The very last feature I'm
going to cover for the moment
is the ability to split the
window in Screen. This means
you can have two shells
running parallel with a tiling
window manager feel to it.
Screen only supports horizontal
splitting out of the box; there is
a patch to enable splitting
vertically, but it requires you to
re-compile Screen by hand. In
order to split the screen
horizontally in Screen, hit the
following key combination:

C-a S

For those who didn't read
my last article, that means ctrl
+a, then S (shift + s). This will
take the current window and
split it in half down the center.
Once you have your two panes,
you can switch between them
with:

C-a <Tab>

where <Tab> is the actual
tab key. If anyone wants to

enable vertical splitting, I'll
post a link to a tutorial in the
Further Reading section.

The last thing I want to
cover for this article is why
someone should use this
instead of a TTY screen, or a
normal shell. The simple
answer is personal preference.
The long answer is that it
allows SSH sessions to run
multi-task without any chance
of losing the processes when
disconnecting, and it also
allows you to minimize the
amount of RAM being used.
Also, it allows you to have a
better overview of what is
running - if you give the Screen
windows titles, and keep them
running in one terminal
emulator, you'll have a status-
bar type list of running
programs. I'm by no means
saying you have to use it, but
for those people to whom the
features of Screen appeal, I
highly recommend using it and
getting into the habit of using
it regularly (which, I have to
admit, I haven't managed yet).
As always, feel free to email
any questions you may have to
lswest34@gmail.com. Any
suggestions for new articles

can be sent there too.

Last command for Screen:

screen -S <name of screen
session>

The above command
creates a Screen session using
the name you supply after the -
S flag, for quick and easy
access (great for when you're
running lots of Screen
sessions).

Vertical splitting:
http://scie.nti.st/2008/8/22/gnu-
screen-with-vertical-split-support
http://www.gnu.org/software/screen/m
anual/html_node/Default-Key-
Bindings.html#Default-Key-Bindings –
The manual page for keybindings on
the GNU homepage.
http://www.math.utah.edu/docs/info/sc
reen_9.html – Short and concise list of
things for .screenrc files, and Screen
in general

mailto:lswest34@gmail.com
mailto:lswest34@gmail.com
http://scie.nti.st/2008/8/22/gnu-screen-with-vertical-split-support
http://www.gnu.org/software/screen/manual/html_node/Default-Key-Bindings.html#Default-Key-Bindings
http://www.math.utah.edu/docs/info/screen_9.html

6 contents ^

Correction

man

vi

ls

cd

ping

iwconfig/ifconfig

halt

alias

rsync/scp

cp/mv

cat

CCOOMMMMAANNDD && CCOONNQQUUEERR
Written by Lucas Westermann

7 contents ^

Lucas

COMMAND & CONQUER

rm

su

locate

ln

echo

pwd

mkdir

touch

grep

find

mailto:lswest34@gmail.com

full circle magazine #34 contents ^

A fter Issue 33 was
released last month,
Ubuntu member Chris
Johnston was kind

enough to send me an email
pointing me to Byobu
(https://edge.launchpad.net/byo
bu). I admit I haven't had quite
as much time to play around
with it as I would like, but I
have gotten a general idea of
what it offers. Also, before I
started this segment, I saw a
lot of mentions of tmux on the
Arch Linux Forums, so I'll be
covering that here as an
alternative. I won't be going
into much detail on the
features, as Byobu is similar to
Screen's key bindings and
settings, and tmux is extremely
well documented, and my
configuration file is commented
and should be clear enough.
Requests for a more in-depth
article on either can be sent to
me via email, since I'm not
sure how much demand there
will be for a thorough walk-
through of their functions.

Byobu
“

.”
(Taken from the Launchpad
page.)

What this means is that
Byobu isn't a re-write of
Screen, but rather something
that goes along with Screen,
adding a few features. The
main features I noticed that are
different from Screen, is that
by default, it comes with a
status bar that offers more
information on the system than
Screen offers by default, as
seen above right.

Also, Byobu
offers an ncurses-
based menu to
create screen
profiles. This can
be accessed by
hitting F9 (as
seen on the task
bar, “Menu:
<F9>”). I won't
add a screen-shot
of the menu,
since it's rather
straightforward
and self-
explanatory.

tmux
“tmux is a terminal

multiplexer: it enables a
number of terminals (or
windows), each running a
separate program, to be
created, accessed, and
controlled from a single screen.
tmux may be detached from a
screen and continue running in
the background, then later
reattached. tmux uses a client-
server model. The server holds

multiple sessions, and each
window is an independent
entity which may be freely
linked to multiple sessions,
moved between sessions, and
otherwise manipulated. Each
session may be attached to
(display and accept keyboard
input from) multiple clients.
tmux is intended to be a
modern, BSD-licensed
alternative to programs such
as GNU screen.” (From the
homepage at
http://tmux.sourceforge.net/)

COMMAND & CONQUER

http://tmux.sourceforge.net/
https://edge.launchpad.net/byobu
https://edge.launchpad.net/byobu

full circle magazine #34 contents ^

 has learned all he knows
from repeatedly breaking his
system, then having no other
option but to discover how to fix
it. You can email Lucas at:
lswest34@gmail.com.

COMMAND & CONQUER
What tmux offers—that is

different from GNU Screen—are
easier-to-understand
commands, vertical and
horizontal splitting, and sane
defaults (status bar, etc.);
moreover, it can be changed
dynamically from the
command-line, and it requires
less memory than GNU Screen.
It requires about 2.4 MB of
memory for the first session,
but each new window requires
only 1 MB of memory. May not
seem like much, but on an
older box it can really make a
difference. Also, by default, the
key bindings all start with ctrl
+ b instead of ctrl + a —which
can be changed, and is
changed in my configuration
file, which I'll post a link to at
the end of the article. Due to
the licensing, it is also included
by default in BSD systems, for
those who are interested in
that kind of stuff. Also, a few
key bindings are different, but
the man page of tmux is
extremely clear, and it offers a
complete list of commands
that can be accessed with the
following command:

tmux list-commands

Above right is a screen-shot
of tmux running (as you can
probably tell, I actually use
tmux on my netbook, as
opposed to Byobu running in a
Virtual Machine):

(~/.tmux.conf):
http://lswest.pastebin.com/fa64
f955

:
http://lswest.pastebin.com/f7d0
cad21

I figured that I should
include a few other choices in
this series, since Linux is all
about choice, and the freedom
to use what you want.

Personally, I find tmux a bit
easier to use and understand,
but GNU Screen is the more
widely-known program, which
is why it was covered in-depth
and tmux wasn't. However, the
man page covers all the usual
info, as well as keyboard
shortcuts, configuration
options, etc. I highly
recommend looking at the man
page before posing questions
on how to do something, since
most of what you'll need to
know is in there (and pretty
easy to find). Both of the
programs are in the Universe
repository in Ubuntu 9.10. As
always, any article suggestions
or questions can be sent to me
at lswest34@gmail and I will do
my best to answer the

questions, and fulfil the
requests.

:
https://edge.launchpad.net/byo
bu
and:
http://blog.dustinkirkland.com/s
earch/label/Byobu

:
http://www.openbsd.org/cgi-
bin/man.cgi?query=tmux&sekti
on=1 (online man page)
and:
http://tmux.sourceforge.net/
(homepage).

mailto:lswest34@gmail.com
http://lswest.pastebin.com/fa64f955
http://lswest.pastebin.com/f7d0cad21
https://edge.launchpad.net/byobu
http://blog.dustinkirkland.com/search/label/Byobu
http://www.openbsd.org/cgi-bin/man.cgi?query=tmux&sektion=1
http://tmux.sourceforge.net/
http://lswest.pastebin.com/f7d0cad21
mailto:lswest34@gmail

full circle magazine #35 contents ^

A fter finishing my
Screen segments, I
realized that it may
be interesting for my

readers to see what other
things the bash or zsh shells
can do. Therefore, I'll be
covering the various shells that
exist for Linux (along with a
short description), and an in-
depth section on
customizing/configuring
(Zsh) and
(Bash), since those are the two
shells I've seen most widely
used, and the two shells I'm
most comfortable with. It also
leaves room for you, my
readers, to play around with a
few new shells on your own
and to learn for yourselves
what they can do.

The following shells are
available:

 (sh) – Original
Unix shell. Offered no notable
features outside of what one
would expect from a shell.

(ash) – BSD-
Licensed re-write of Bourne
Shell. Similar feature set as
above.

(bash) –
Standard shell used in Linux
distributions. Offers a superset
of Bourne Shell functionality.
 Written as part of the GNU
Project.

(dash) – Modern replacement
of the Almquist shell for Debian-
based Linux distributions.

(ksh) – A shell
written by David Korn.

 (zsh) – Considered the
most “complete” shell
available (offers the most
features). Could be described
as a superset of sh, ash, bash,
csh, ksh, and tcsh (TENEX C
shell).

(csh) – A shell written
by Bill Joy, and is special in the
sense that its syntax is similar

to the c programming language.

This is by no means an
exhaustive list of shells, but
they're the ones I believe are
still actively developed/used
among the community. You
may wonder why anyone would
bother to change their default
shell. The main reason why I
prefer Z Shell over Bash is
simply because it offers certain
features I prefer (a better tab
auto-completion than Bash,
easier colour syntax for
prompts, a right-hand prompt
as well as a left-hand one,
etc.). As with so many things
to do with Linux, it ultimately
boils down to choice. Maybe
you're a skilled c programmer,
and prefer to have a shell that
has a similar syntax, and have
therefore opted for the C Shell.
I won't say one is better than
another, simply because it has
a feature or two that others
don't, and vice versa. I will,
however, only cover how to
configure Bourne-Again Shell
and Z Shell in this article,

because I have experience with
these, and because they seem
to be the most widely used
shells out there.

The first thing I need to
cover is how to install and test
a new shell, and how to change
the default shell. To install, you
just need to apt-get whatever
shell you'd like to try out.
 Once it's installed, checking
the manpage will give you the
location of the configuration
file. Also, since you'll most
likely want to see the default
prompt, you can switch shells
by simply running the binary
name for the shell. (sh, ash,
bash, zsh, csh, ksh, and so
forth). It will drop you into that
shell without changing the
default. I always recommend
viewing the default
configuration file, and making
a local version for
customization, in case
something goes awry. I also
recommend testing a new
prompt via the command line,
before committing it to the

COMMAND & CONQUER

full circle magazine #35 contents ^

COMMAND & CONQUER
configuration file. This is as
simple as exporting the PS1 via
the command-line. Just keep
tweaking it until you're happy,
and then copy the end product
into the configuration page.
 Once you're happy with the
configuration, and certain that
there are no major problems
with the configuration file, you
are ready to change the default
shell (as long as you want to).
 To do so, run the following
command:

sudo chsh -s /path/to/binary
$USER

You need to replace
“/path/to/binary” with the path
to the shell (i.e. /bin/bash), and
$USER with your actual
username/username of the
account whose shell you'd like
to change. In case you're not
sure what shells you have
available (and recognized by
the system), you can view
them using:

chsh -l

This may not show all the
shells, since it merely prints
those listed in /etc/shells, but
most packages should update

that file accordingly.

You may be wondering what
exactly you can configure in a
shell, and why you would
bother. A few things that I will
cover are: exporting
environment variables for use
in window managers (openbox
instead of Gnome, for
example), aliasing commands
for easier use, customizing the
prompt itself, and adding
functions to the shell.

Configuring Z Shell
Follow this link:

http://lswest.pastebin.com/WB
m22Wig to view a full .zshrc
file. A note on the bindkeys:
this is due to the fact that Zsh
lacks support for
home/end/page up/page down,
and displays only escape
sequences when pressed,
unless you define bindkeys
such as I have. You may need
to find the right escape
sequence for the key. If you
have vi emulation enabled
(which is what I use, and is
done with bindkeys -v), you
can see the escape sequence
by hitting ctrl + v, and then the

key you wish to have the
escape sequence for. Chances
are the ones I use will work for
most others though, so you can
always try them first.

I'll be referring to the file for
examples (using the line
numbers as viewed on
pastebin).

The first thing I'd like to
cover is how to export
variables, since it's a useful
thing to know, and pretty easy
to do. To export a variable, all
you need to do is use the
syntax:

export $VARIABLE=”value”

As you can see in my
configuration file on lines: 11,
15, 117, 82, 116, 131 and 132.
 You need to, of course,
replace “$VARIABLE” with the
actual variable (such as DE, or
OOO_FORCE_DESKTOP), and
“value” with the actual value.
 You can put quotes around the
value, or leave them away if
it's only one word (as you can
see in the file). The last two
exports in my configuration file
are extremely useful when
using openbox, since it sets the

Desktop Environment to
Gnome for xdg-open (the
program that auto-selects the
default application for
filetypes). In other words “xdg-
open” and a file path will open
nautilus when set to Gnome,
thunar when set to xfce, and
konqueror when set to kde.
 The OOO_FORCE_DESKTOP
export also sets OpenOffice to
use the gtk theme, instead of
using the QT theme, which is
the default option unless the
DE is gnome.

The next useful trick is to
add aliases to your
configuration file, so that you
can use extended arguments
for a command easily. This can
be seen particularly well on
line 84, since I use the alias
trayer (thereby ignoring the
actual binary file of that name),
and use it to launch trayer with
a specific set of arguments. If,
however, you discover you
want to use the original trayer
binary without the alias, you
can override the alias
temporarily by using the
following:

\<alias name>

http://lswest.pastebin.com/WBm22Wig

full circle magazine #35 contents ^

COMMAND & CONQUER
So, in this case it would read

\trayer. It's similar to how you
escape certain characters so
that a shell sees it only as text.
 An extremely useful alias I use
on all my *nix boxes, is the
alias for ls (on line 64), since it
gives me a much more detailed
listing of files within the folder.

Now we come to the most
widely use customization of
Shells. The prompt itself. The
prompt I prefer to use in Z
Shell is in the following format:

┌─[lswest@laptop:~] - [14:24:29]
└─>

It's a double-line prompt,
giving me more room to write
commands, and it offers me
the current user logged in, the
hostname, and the current
working directory (after the
colon). For those wondering
how I manage a double-line
prompt, the magic happens
here: "$'\n'", where I break the
main section of the prompt,
and add in an escape sequence
for a new line, and then
continue the prompt. This
doesn't work (last time I tried),
with just the escape sequence
in double quotes. Also, a right-

handed prompt can be added
using the RPROMPT variable (I
have it commented out in my
configuration file, but it is still
there).

I update the configuration
file regularly, and the copy
that's on pastebin at the
moment is an iteration or two
behind, but the major change
is that my current prompt also
offers me the time I ran a
command. If you look at the
configuration file, you can see
that there are actually two
prompts listed in an if
statement. Basically it checks
to see if I'm using screen, and
if so, it displays the current
screen window value before
my username, making it easy
to keep track of where I am. A
complete list of escape
sequences for Zsh is available
on the man page for zshmisc,
but here is a list of ones I often
use (taken from
http://www.acm.uiuc.edu/works
hops/zsh/prompt/escapes.html):

Literal characters
%% - A %
%) - A)

Directories
%d - The current directory
($PWD)

%~ - $PWD, but will do two
types of substitutions. If a
named dir 'X' is a prefix of the
current directory, then ~X is
displayed. If the current
directory is your home
directory, $HOME, just ~ is
displayed.

%c - Trailing component of
$PWD. If you want n tailing
componenets, put an interger
'n' after the %.

%C - Just like %c and %. except
that ~'s are never displayed in
place of directory names.

Hostname info
%M - The full machine
hostname.

%m - The hostname up to the
first . (dot). An integer may
follow the % to specify how
many components of the
hostname are desired.

Current time info
%t - Current time of day, in 12-
hour, am/pm format.

%T - Current time of day, in 24-
hour format.

%* - Current time of day in 24-
hour format, with seconds.

Current date info
%w - The date in day-dd format.

%W - The date in mm/dd/yy
format.

%D - The date in yy-mm-dd
format.

%D{string} - string is
formatted using the strftime
function. See strftime(3) for
more details. Three additional
codes are available: %f prints
the day of the month, like %e
but without any preceding
space if the day is a single
digit, and %K/%L correspond to
%k/%l for the hour of the day
(24/12 hour clock) in the same
way.

http://www.acm.uiuc.edu/workshops/zsh/prompt/escapes.html

full circle magazine #35 contents ^

COMMAND & CONQUER
Miscellaneous info
%h - Current history event
number.

%n - Equivalent to $USERNAME.

%l - The line (tty) the user is
logged in on.

%# - A `#' if the shell is
running with privileges, a `%' if
not. The definition of
privileged, for these purposes,
is that either the effective user
ID is zero, or, if POSIX.1e
capabilities are supported, that
at least one capability is raised
in either the Effective or
Inheritable capability vectors.

Zsh offers a few default
colours that can be accessed
with names such as red, cyan,
etc. But it also accepts the
usual \e[0;31m style formatting
(as discussed in the Bash
section).

Last, but possibly most
useful, is the ability to add
functions to a shell. The set up
is exactly the same as for Bash
scripts. The method is to
define a function with “function

name() { #code }”. I have a
few functions in my Zshrc file,
such as: m4a, flvmp3, google,
etc. As you can see, you can
also define a function without
using the descriptor “function”,
but it makes it more readable.
 My configuration file is by no
means a good example of an
organized file. Ideally, I'd have
kept all exports together, all
functions together, all aliases,
and so forth. Instead, I add
things to the file as I think of
them, leaving me with a bit of
a mess. I'll probably get
around to tidying it up
eventually (seems to happen
about once a year)

Configuring Bourne-
Again Shell

Exporting and aliasing are
exactly the same for Bash
shells as for Zsh shells, so to
see how to do that, please read
the first two explanations of
the Configuring Z Shell section.
 The only sections in the .zshrc
file I have a link to that aren't
relevant to Bash prompts are
the bindkeys section, and the
PROMPT sections.

As for customizing the

prompt in Bash, it's similar to
Zsh, except for the list of
escape sequences you can use,
and how the variable behaves
when it comes to double-lines.
 The following is a list of
escape sequences for bash
(taken from:
http://www.cyberciti.biz/tips/ho
wto-linux-unix-bash-shell-setup-
prompt.html):

\a : an ASCII bell character (07)

\d : the date in "Weekday
Month Date" format (e.g., "Tue
May 26")

\D{format} : the format is
passed to strftime(3) and the
result is inserted into the
prompt string; an empty
format results in a locale-
specific time representation.
The braces are required

\e : an ASCII escape character
(033)

\h : the hostname up to the
first '.'

\H : the hostname

\j : the number of jobs currently
managed by the shell

\l : the basename of the shell’s
terminal device name

\n : newline

\r : carriage return

\s : the name of the shell, the
basename of $0 (the portion
following the final slash)

\t : the current time in 24-hour
HH:MM:SS format

\T : the current time in 12-hour
HH:MM:SS format

\@ : the current time in 12-
hour am/pm format

\A : the current time in 24-hour
HH:MM format

\u : the username of the
current user

\v : the version of bash (e.g.,
2.00)

\V : the release of bash, version
+ patch level (e.g., 2.00.0)

http://www.cyberciti.biz/tips/howto-linux-unix-bash-shell-setup-prompt.html

full circle magazine #35 contents ^

 has learned all he knows
from repeatedly breaking his
system, then having no other
option but to discover how to fix
it. You can email Lucas at:
lswest34@gmail.com.

COMMAND & CONQUER
\w : the current working
directory, with $HOME
abbreviated with a tilde

\W : the basename of the
current working directory, with
$HOME abbreviated with a tilde

\! : the history number of this
command

\# : the command number of
this command

\$: if the effective UID is 0, a
#, otherwise a $

\nnn : the character
corresponding to the octal
number nnn

\\ : a backslash

\[: begin a sequence of non-
printing characters, which
could be used to embed a
terminal control sequence into
the prompt

\] : end a sequence of non-
printing characters

To make a multi-line prompt
in Bash, all you need to do is
place an escape sequence
newline character (“\n”) where

you'd like the line to break.
 You can also customize PS2
and onwards, which appear
when you start a multi-line
command (e.g. A for loop). As
for colors, the escape
sequences are available (from:
http://wiki.archlinux.org/index.p
hp/Color_Bash_Prompt#List_of_
colors_for_prompt_and_Bash):

You can, of course, place the
colors inside variables and use
that within the configuration
file. The bash version of my
Zsh prompt (without the
timestamp) would be as follows:

export
PS1="\[\e[0;37m\]┌─[\[\e[0;32m
\]\u\[\e[0;36m\]@\[\e[0;32m\]\h\
[\e[0;37m\]:\[\e[0;33m\]\w\[\e[0
;37m\]]\[\e[0;36m\]\n\[\e[0;37m
\]└─>\[\e[0m\] "

I apologize for not having an
example bash file to display,
but the configuration syntax
for both Zsh and Bash are
similar, so that should be a
decent example for both. If
any reader would like, I would
be happy to display your
customized .bashrc files, along
with a textual representation of
the prompt, at the beginning of

each month's Command &
Conquer. If you're interested,
just send me an email at
lswest34@gmail.com with your
.bashrc, and a textual
representation of the prompt,
or an actual screenshot. Also,
please refer to Command &
Conquer in the subject line, so
that I put it higher on my
priority list. For any users who
use urxvt/define custom
prompt colors in your
.Xdefaults, please share the
relevant section as well (if you
send a screenshot).

Any questions, suggestions,
or problems can be emailed to
me at lswest34@gmail.com,
and any further ideas for
segments are always welcome
in my inbox! I wish you all a
fun time configuring your
prompts, and I'm curious to see
what your results will be! I
hope I've done a good job at
explaining this, and I'll gladly
continue on with further
customizations to the terminal,
if there's enough interest. And,
as always, there is plenty more
information regarding this in
the Further Reading section.

Further Reading
http://en.wikipedia.org/wiki/Alia
s_%28command%29 – Info on
the Alias command

http://www.cyberciti.biz/tips/ho
wto-linux-unix-bash-shell-setup-
prompt.html – Bash prompt
customization how-to

http://markelikalderon.com/200
7/11/24/full-paths-and-the-
multiline-shell-prompt/ - Multi-
line prompts.

http://wiki.archlinux.org/index.p
hp/Color_Bash_Prompt#List_of_
colors_for_prompt_and_Bash –
colorizing bash prompts

http://docs.cs.byu.edu/linux/adv
anced/zsh.html – how to
configure Zsh prompts.

mailto:lswest34@gmail.com
http://wiki.archlinux.org/index.php/Color_Bash_Prompt#List_of_colors_for_prompt_and_Bash
mailto:lswest34@gmail.com
mailto:lswest34@gmail.com
http://en.wikipedia.org/wiki/Alias_%28command%29
http://www.cyberciti.biz/tips/howto-linux-unix-bash-shell-setup-prompt.html
http://markelikalderon.com/2007/11/24/full-paths-and-the-multiline-shell-prompt/
http://wiki.archlinux.org/index.php/Color_Bash_Prompt#List_of_colors_for_prompt_and_Bash
http://docs.cs.byu.edu/linux/advanced/zsh.html

full circle magazine #36 contents ^

F ollowing my article last
month on customizing
prompts and shells, I
thought it might be

nice to explain how you can
customize the colours used by
your terminal. It's also a good
introduction to your .Xdefaults
file, which offers quite a bit of
control over user-specific
settings. It can be used to set
the mouse cursor, urxvt-
specific settings, configuring
terminal settings, setting DPIs,
anti-aliasing, and other X Font
preferences, and theming
xscreensaver, among other
things. There are plenty of
examples of terminal colour
schemes at Aaron Griffin's
website (he's the lead
developer of ArchLinux):
http://phraktured.net/terminal-
colors/. Today, I'll be covering
the process by which you can
design your own terminal
colour scheme. This consists of
a few basic steps:

• Understanding the syntax of
the .Xdefaults file regarding
colours

• Finding hex values of
colours, and finding
complementary colours

• Some way to display the
resulting colour scheme as a
test

I'll be focusing on the

methods I'm comfortable with,
but it's by no means the only
way to create these colour
schemes. The first thing to do
is to check the current colour
scheme to see what you have
to work with, if anything. To do
so, I highly recommend Daniel
Crisman's colourscheme.sh
(see the first link of the Further
Reading section, at the very
end of that webpage). To use it,
just copy it into a file, and
chmod +x the file. For example:

vim colours
(see footnote [1] on the next page for
more information on the above)

<after pasting in the script and
exiting vim>

sudo chmod +x colours

Then to run it all you need
to do is the following:

./colours

It will display something like
the one shown below.

The second step for me is
always to pick a base colour,
which impacts what other
colours I can choose, as we
want complementary colours.
You can always choose a basic
colour, green, for example.
Then you can open a colour
palette, either gcolor2 if you
want a stand-alone colour
chooser, or you can use GIMP
to mix new colours. What's

important to note is the hex
value of the colour you decide
upon. Once you've decided
upon your base colour, it's time
to find complementary colours.
If you share my problem of
being unable to think of
complementary colours off the
top of your head, you can use
the search function on
ColourLovers:
http://www.colourlovers.com/
and give it the hex value for
the colour to find palettes of
matching colours. Once you've
decided upon your set of 16
colours (and the
background/foreground
colours, for a total of 18 hex
values), it's time to write it into
your .Xdefaults. The format to
do so for all terminals is this:

!---- Terminal Colours
*background: #000000
*foreground: #ffffff
*color0: #000000
*color1: #9e1828
*color2: #aece92
*color3: #968a38
*color4: #414171
*color5: #963c59
*color6: #418179
*color7: #bebebe

COMMAND & CONQUER

http://phraktured.net/terminal-colors/
http://www.colourlovers.com/

full circle magazine #36 contents ^

 has learned all he knows
from repeatedly breaking his
system, then having no other
option but to discover how to fix
it. You can email Lucas at:
lswest34@gmail.com.

COMMAND & CONQUER
*color8: #666666
*color9: #cf6171
*color10: #c5f779
*color11: #fff796
*color12: #4186be
*color13: #cf9ebe
*color14: #71bebe
*color15: #ffffff

The top line is the format for
comments in the .Xdefaults
file. You can also specify a
colour scheme for a specific
terminal by appending the
name of the binary in front of
the asterisk. For example (the
same scheme, just for urxvt-
only):

urxvt*background: [70]#000000
urxvt*foreground: #ffffff
urxvt*color0: #000000
urxvt*color1: #9e1828
urxvt*color2: #aece92
urxvt*color3: #968a38
urxvt*color4: #414171
urxvt*color5: #963c59
urxvt*color6: #418179
urxvt*color7: #bebebe
urxvt*color8: #666666
urxvt*color9: #cf6171
urxvt*color10: #c5f779
urxvt*color11: #fff796
urxvt*color12: #4186be
urxvt*color13: #cf9ebe
urxvt*color14: #71bebe
urxvt*color15: #ffffff

In this version, the value in
square brackets before the hex
value for the background is an

opacity setting (so 70%
opaque, or 30% transparent).
This is only possible for
terminals that support
transparency, and on systems
where you're running a
compositing manager
(xcompmgr, cairo-compmgr,
compiz, mutter, and so forth),
in order to render the true
transparency.

Once you've added your

preferred colours into the
.Xdefaults file, you'll probably
want to see what it looks like
without having to log out and
back in. Luckily, you can do so
with just a little bit of
command-line magic. Entering
the command:

xrdb -merge ~/.Xdefaults

will force xrdb (X Resource
Database Manager) to re-load
the settings within .Xdefaults,
and thereby overwrite any
current settings. Re-running
the colours script will also give
you an overview of your new
colour scheme.

This is essentially all there is
to it. It may take a bit of trial
and error to find a setup that

you really like, but that's part
of the fun. I also realize that
the two links I have for more
info about .Xdefaults are for
Arch, but I wasn't able to find
any similar pages for Ubuntu.
Besides, the instructions will be
almost identical for either
system. The examples I used
above are also the colour
scheme I use, which I believe I
based on someone's .Xdefaults
that I found online years ago.
There's probably not much left
of the original, but I felt I
should note that it's not all my
work. As usual, any questions,
suggestions, or general
feedback, can be directed to
lswest34@gmail.com. I also
ask that anyone who does send
an email write “FCM – C&C” in
the subject header, so that I
don't overlook it. I'd also love
to see the results of your
.Xdefaults, and I'll gladly
feature a few in the next C&C,
if you send me a screenshot
and the corresponding
.Xdefault settings.

Daniel Crisman's
colourscheme.sh from:
http://tldp.org/HOWTO/Bash-
Prompt-HOWTO/x329.html

Arch Wiki page on .Xdefaults,
with a few links and examples:
http://wiki.archlinux.org/index.p
hp/Xdefaults

A thread on the Arch Forums,
with terminal colour schemes:
http://bbs.archlinux.org/viewtop
ic.php?id=51818&p=1

ColourLovers (for colour
palettes):
http://www.colourlovers.com/

[1] In order to paste in Vim without it
adding spaces due to auto-indenting,
run “:set paste”, hit “i” to insert in
paste mode, and paste your script
into the file. To disable paste mode,
give in “:set nopaste”. Both
commands are run in the usual vim
way, and without quotes.

mailto:lswest34@gmail.com
http://tldp.org/HOWTO/Bash-Prompt-HOWTO/x329.html
http://wiki.archlinux.org/index.php/Xdefaults
http://bbs.archlinux.org/viewtopic.php?id=51818&p=1
http://www.colourlovers.com/

full circle magazine #37 contents ^

I f you own a laptop, you've
probably often checked
your emails, read up on
news, or done something

online - while travelling. If
you're like me, you'll cringe
inwardly whenever you do so,
knowing full well that there
may be someone else
connected to the free/public
hotspot running a packet
sniffer and hoping for a few
passwords or banking data. I
have set a firm “no banking on-
the-road” rule for myself and
my family, but I'm also worried
about our other passwords and
private data. This is where SSH
port-forwarding can be
extremely useful. It uses SSL to
encrypt all the data it sends; it
uses the public wifi for nothing
more than a link to whatever
your SSH server happens to be
(home server, home PC, work
server, virtual private server,
etc.); and it protects your
traffic both to and from your
computer from most packet
sniffers and man-in-the-middle
attacks.

The first thing you'll need to
do is set up an SSH server on
your PC, or sign up for a shell
account/virtual private server
somewhere, if you don't
already have it set up. If you
already have access to an SSH
account, skip ahead to step 7.

First step:
Install OpenSSH server on

your Ubuntu system:

sudo apt-get install openssh-
server openssh-client

Second step:
Create a backup of

/etc/ssh/sshd_config

cp /etc/ssh/sshd_config ~

Third step:
Modify the sshd_config file.

You can read up on possible
options using the man page:

man sshd_config

The basic configuration
should simply be to disable
root login, and to specify users

who can log in via SSH. To do
this, open /etc/ssh/sshd_config:

sudo vim /etc/ssh/sshd_config

Once it's open, change the
line “PermitRootLogin yes” to
“PermitRootLogin no” and add
the line “AllowUsers
user1,user2,user3” somewhere
in the file. You need to, of
course, change “user1” to the
actual username, while user2
and user3 should be replaced
with any other accounts who
are permitted to connect to the
server. For example my line
would read:

AllowUsers lswest

Since I have only one
permitted account and user,
that is what I would enter.

Fourth step:
Restart the SSH server after

you've completed your
changes to the configuration
file:

sudo /etc/init.d/ssh restart

Fifth step:
Create SSH keys (if you

want to). Since this step is
optional, I won't cover the
exact commands. If you wish to
generate keys, follow the
instructions in the wiki (see the
link in the Further Reading
section).

Sixth step:
Configure your server/PC to

allow internet access, and
configure dyndns. I have never
configured dynamic DNS for
any computer, so I will leave
those instructions to the wiki
article (second link of my
Further Reading section). A
short-term solution would be to
create a cron job to run the
following command

curl
http://www.whatismyip.org

and to redirect the output into
your Dropbox or Ubuntu One
folder, so you can check it from
other computers. i.e.:

COMMAND & CONQUER

full circle magazine #37 contents ^

 has learned all he knows
from repeatedly breaking his
system, then having no other
option but to discover how to fix
it. You can email Lucas at:
lswest34@gmail.com.

COMMAND & CONQUER
curl
http://www.whatismyip.org >
~/Dropbox/IP.txt

I explained cron jobs in
Issue 24, in case you want a
deeper understanding of it. If
not, the following steps will set
up a cron job to do the above
command every day at 12 p.m.
(noon):

crontab -e $USER

Add the following line to the
file:

00 12 * * * curl
http://www.whatismyip.org >
~/Dropbox/IP.txt

Once this step is complete,
you're ready to begin.

Seventh step:
You'll need the following

information:

IP address of your server,
username and password, or a
username and a key file (from
step 5).

To connect and forward all
traffic over port 8080 to your
SSH connection, run the
following command:

ssh -D 8080 lswest@localhost

You'll then be asked to
accept the rsa id from the
server, to which you answer
“yes”, and then you will need
to supply your password (if you
don't have a key file
generated). Once you've
entered your password, you'll
be greeted with the normal
SSH prompt. You'll need to
leave the connection
active/window open (unless
you run it in screen or tmux -
then you can simply detach the
session).

Eighth step:
Configure the SOCKS proxy

in Firefox. This is simply done
by going to Edit > Preferences
> Advanced tab > Network sub-
tab > Connection Settings.
Once that opens, configure the
settings shown in the image
above right.

Ninth step:
Disconnecting from the

SOCKS proxy. Simply change
the configuration to “Auto-
Detect proxy settings for this
network”, or to “No Proxy”, and

disconnect from the
SSH server.

Hopefully, this

article is useful for
those who are very
security-conscious,
and maybe it will
increase awareness
for some everyday
security problems
that many people fail
to realize. Naturally,
there are more uses
for this, and the
proxy can be used in
Evolution/Thunderbird
, as well as many
other programs, but I
felt that this was the most
universal/more useful scenario
in which it would be used. As
always, I'm happy to answer
specific questions, or take
requests for articles by email.
Send any feedback, questions,
and so forth, to
lswest34@gmail.com with the
words “Command & Conquer”
(or just C&C) in the subject line.

https://help.ubuntu.com/9.10/se
rverguide/C/openssh-
server.html – Wiki article on
installing OpenSSH

https://help.ubuntu.com/commu
nity/DynamicDNS – Wiki article
on installing and configuring
dynamic dns

mailto:lswest34@gmail.com
https://help.ubuntu.com/9.10/serverguide/C/openssh-server.html
https://help.ubuntu.com/community/DynamicDNS
mailto:lswest34@gmail.com

full circle magazine #38 contents ^

B efore I begin the
actual article, I'd like
to mention an email I
received from a

reader. Alexander was kind
enough to point out that there
is a GUI tray program called
“gstm” that does ssh port
forwarding. For those of my
readers who prefer GUI
alternatives where possible,
there you go. It's available in
the universe repository. Also, a
reader (who, alas, did not
share his/her name with me -
but you know who you are!)
pointed out that in Step 7 of
my FCM#37 C&C article I failed
to point out that you need to
substitute "localhost" with the
IP of your server. (The
command was "ssh -D 8080
lswest@localhost", where
lswest@localhost had to be
substituted with
your_username@IP_ADDRESS_S
ERVER). Sorry for any
confusion that may have
resulted.

This month, I spent quite

some time re-writing a few

patches for DWM (Dynamic
Window Manager) so that they
would work with the pango
patch, which adds xft font
support to DWM's statusbar. In
doing so, I learned quite a bit
about diff, and have decided to
share what I learned with you,
my readers. If you're asking
yourselves “why should I know
how to use diff, since I don't
use DWM nor generate
patches?”, the answer is
simply because diff can be
applied to so many situations.
Imagine you are writing a
script, and you want to add to
the script, but require the old
version for a different
computer - instead of creating
and backing up two separate
scripts, you can write the
script, create a copy of it, make
changes to the copy, generate
a .diff file, and back up the
original script and the .diff file,
and save yourself some work in
the future. Or, if you're helping
a friend, and you can't simply
send them the file you need to
correct, you can send them a
.diff to make the changes.

There are probably many other
uses (adjusting configuration
files, and so forth) that I
haven't thought of yet.

Diff is installed, by default,

in most distributions. If it's not
present in Ubuntu, just install it
with:

sudo apt-get install diff

Once it's installed, you're

pretty much all set. In order to
generate a .diff file, you need
to have two files you want to
analyse. One will be the
“original” (I will refer to it as
such from now on), and the
other will be the “updated” file.

For simplicity, let's say I

have a file that contains the
following:

And I want to change this to:

I'd make the changes I want
in the “updated” file. I usually
add a “-patched” suffix at the
end of the filename. Once the
changes are made, and I want
to generate a diff, I will type
the following into my terminal
of choice:

diff -up original updated >
articles\list\update.diff

COMMAND & CONQUER

full circle magazine #38 contents ^

 has learned all he knows
from repeatedly breaking his
system, then having no other
option but to discover how to fix
it. You can email Lucas at:
lswest34@gmail.com.

COMMAND & CONQUER
Replace “original” and

“updated” with the actual file
names and paths. If you don't
want the diff file to be created
in the current working
directory, append a path to the
filename on the other side of
the “>”. The “>” tells the shell
to redirect all output into
whatever you pass after the
symbol - in this case, the .diff
file. If you want to apply the
changes to another copy of the
original file (on a different
computer, for example), you
would need to run one of the
two commands in the folder
containing the file you wish to
patch (they do the same thing):

patch -p1 < /path/to/.diff

patch -Np1 -i /path/to/.diff

Where, of course, you
exchange the “/path/to/.diff”
with the actual path.

I realize that my example

isn't really a case where you
would decide to use a
patch/.diff file to make
changes, but I chose it for the
sake of simplicity. Another
scenario where diff is useful: if
you have two files (in my case,

it's usually configuration files),
and you don't know if they've
been changed, and if they
have, what changes you've
made. To check this, you can
simply run the command:

diff /path/to/first/file
/path/to/second/file

Be sure to actually replace
the paths. The output should
look something like this:

5c5
< - Cover useful stuff to do
with curl, wget, and so
forth? And diff?

> - Diff (wget and curl next
month)

I'll explain the above line by
line. The “5c5” is (I believe) a
comparison of lines within the
first and second files. I'm not
certain of this, but it seems to
be the case. The next line
displays a line that was
removed (the “<” denotes
deleted), and the line below
displays the line that was
added (therefore replacing the
original line), which can be
seen with the “>” symbol.

As you can see, this is a

very useful tool for figuring out
the differences between two
files, especially if they're rather
long. You can pipe the output
into “more” or “less” for easier
reading, or redirect it into a
text file. The format will be the
same, as long as you don't
append any arguments to the
diff command.

Hopefully this introduction

to diff has helped you realize a
scenario in which you could
make use of it, and will
hopefully make life easier for
anyone who decides to use it.
As always, any questions or
comments can be emailed to
me at lswest34@gmail.com. Be
sure to include “C&C” or “FCM”
in the subject line, so that I
reply quickly (and can organize
my emails easily!).

mailto:lswest34@gmail.com
mailto:lswest34@gmail.com

full circle magazine #39 contents ^

B efore I start this
month's article, I have
a few corrections to
make for my last

article. Reader pointed
out that patch isn't installed by
default in Ubuntu, and also
wanted to make me aware of

 (vim-style diff
interface).

Moving on to this month, I
thought it would be fun to
cover two command-line tools
for downloading websites/web-
pages, namely, and

. You may be thinking
“but I have Firefox, why would I
need cURL or Wget?”. The
main reasons I use them
nowadays is when I need to
make an offline copy of a
website (not just one web
page) or to download a web
page/file when behind a
firewall that blocks that
website. There are plenty of
other uses for them, such as
archiving your own website,
parsing websites within scripts,
quickly downloading something
without opening Firefox, or

downloading all files of a type
(useful for students who have
web-portals with lots of
research PDFs). For those
wondering what the difference
is between cURL and Wget, it's
a subtle, but important,
difference. cURL pulls down the
HTML code and prints it to
STDOUT (i.e. returns it as the
output of the command), while
Wget downloads the .html files.
This means that cURL is ideal
for parsing certain streams (if
you're writing a Google search
script, for example), while
Wget is useful for making a full
archive of a website.

Here are a few examples for
cURL:

curl -L www.w3schools.com/css

This command tells cURL to
follow any redirects on the CSS
page of w3schools.com
(specifically, Location:
pointers). On this site, it should
follow the “Next Chapter” links
automatically.

curl -u name:password
https://mail.google.com/gmail
/feed/atom

This command gives cURL a
user-name and password to
allow it to authenticate on the
website (in this case, Gmail's
atom feed), thereby gaining
access to the site without you
having to open Firefox.

These examples could be
used in a script that accesses
Google, searches for

something, and returns the
results/HTML of the top result.
It can also log you into your
Google mail account.

And Wget examples:

wget -r -l3
http://w3schools.com/css/

This command sends Wget
to w3schools.com, and follows
the links recursively for 3 levels
(i.e. 3 Homepage --> CSS Intro -
-> CSS Syntax). It should be

COMMAND & CONQUER

full circle magazine #39 contents ^

 has learned all he knows
from repeatedly breaking his
system, then having no other
option but to discover how to fix
it. You can email Lucas at:
lswest34@gmail.com.

COMMAND & CONQUER
noted that using a recursive
website travel in Wget can put
a large strain on a webserver,
so it should always be used
with the levels argument, in
order to minimize website
traffic.

wget -c -U Mozilla
www.website.com

I didn't include an actual link
in this example, because I
couldn't think of a site that
applied off the top of my head.
However, this Wget command
pretends to be Mozilla's
browser (by altering the user
agent) in order to get around

restrictions on download
managers. The -c option tells
Wget to store any partially
downloaded files so that the
download can be resumed.

wget -r -l1 -A.pdf --no-
parent http://url-to-webpage-
with-pdfs/

This command tells Wget to
recursively follow a website for
one level, and download any
pdf files it finds. The --no-
parent option tells Wget to
never follow a link up to the
parent directory (i.e.
www.test.com from
www.test.com/something),

which is useful for avoiding
strain on the server as well.
The -A option accepts a comma-
separated list of file
extensions, or
wildcards/patterns. In order to
reject any files of a certain
type, use -R instead of -A.

Hopefully this (admittedly
short) article has made the
power of Wget and cURL clear,
and, as always, plenty more
information can be found in
their respective manpages. For
anyone who has requests for
command-line tools that I
should cover, you can send me
an email at
lswest34@gmail.com with
“FCM C&C” or “Command &
Conquer” in the subject line. If
I don't already know the tool,
I'll figure it out before I write
the article. For anyone who
comes up with a use for cURL
or Wget that they find quite
clever, feel free to share it with
me in an email as well.

http://curl.haxx.se/docs/httpscri
pting.html – Great cURL
tutorial/manpage (some
examples were borrowed from
here).

http://linuxtuts.blogspot.com/20
08/03/tutorials-on-wget.html –
Great tutorial on Wget (some
examples were borrowed from
here).

mailto:lswest34@gmail.com
http://curl.haxx.se/docs/httpscripting.html
http://linuxtuts.blogspot.com/2008/03/tutorials-on-wget.html
mailto:lswest34@gmail.com

contents ^

ping -c 3 google.com

sudo ifconfig

sudo dhclient eth0

contents ^

sudo ifconfig eth0 up

sudo ifconfig -a

sudo iwconfig $interface
essid $ESSID key $KEY

sudo iwconfig wlan0 essid
home key s:passkey

sudo dhclient $interface

wpa_passphrase $ESSID
$passphrase >
~/passphrase.txt

network={

ssid="test"

#psk="testing123"

psk=a9ff0c9d1f2367bccf9959e95
bc08695bf411f82b146c55b9486dd
b17495f39d

}

sudo wpa_supplicant -
i$interface-c$file -D$driver

sudo dhclient $interface

elinks

contents ^

mailto:lswest34@gmail.com
mailto:lswest34@gmail.com
http://u-cubed.eventbrite.com

5 contents ^

Fdisk:

sudo fdisk -l

sudo fdisk /dev/sda

Command action
 a toggle a bootable flag
 b edit bsd disklabel
 c toggle the dos
compatibility flag
 d delete a partition
 l list known partition
types
 m print this menu
 n add a new partition
 o create a new empty DOS
partition table
 p print the partition
table
 q quit without saving
changes
 s create a new empty Sun
disklabel
 t change a partition's

system id
 u change display/entry
units
 v verify the partition
table
 w write table to disk and
exit
 x extra functionality
(experts only)

CCOOMMMMAANNDD && CCOONNQQUUEERR
Written by Lucas Westermann

Disk /dev/sda: 320.1 GB, 320072933376 bytes
255 heads, 63 sectors/track, 38913 cylinders, total 625142448 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x76692ca8

Device Boot Start End Blocks Id System
/dev/sda1 2048 30716279 15357116 1c Hidden W95 FAT32 (LBA)
/dev/sda2 * 30716280 186996599 78140160 7 HPFS/NTFS
/dev/sda3 186996600 625137344 219070372+ f W95 Ext'd (LBA)
/dev/sda5 186996663 543109454 178056396 7 HPFS/NTFS
/dev/sda6 543109518 570452084 13671283+ 83 Linux
/dev/sda7 570452148 625137344 27342598+ 83 Linux

6 contents ^

COMMAND & CONQUER

Hex code (type L to list
codes): 82

Mkfs:

mkfs /dev/sdXY

mkfs.ext2 /dev/sdXY

mkfs -t ext2 /dev/sdXY

Find:

find /home/ -name “*~”

[...] ever been
looking for a file,
and find that
Nautilus just doesn't
cut it?

7 contents ^

Lucas

COMMAND & CONQUER

Locate:

sudo updatedb

locate “*~”

Where/Whereis:

where skype

output: /usr/bin/skype

whereis skype

output: skype:
/usr/bin/skype.real
/usr/bin/skype
/usr/bin/skype.bak2
/usr/share/skype

Further Reading:

mailto:lswest34@gmail.com
mailto:lswest34@gmail.com
http://www.linfo.org/mkfs.html
http://tldp.org/HOWTO/Partition/fdisk_partitioning.html

5 contents ^

Step 1

Step 2

Step 3 Step 4

Step 5

Step 6

CCOOMMMMAANNDD && CCOONNQQUUEERR
Written by Lucas Westermann

6 contents ^

Lucas

COMMAND & CONQUER

Step 7

Full Circle Podcast

Review

News

Opinion

Gaming

mailto:lswest34@gmail.com
mailto:lswest34@gmail.com
http://fullcirclemagazine.org/

5 contents ^

#!/bin/bash

updateChecker=`apt-get -s
upgrade|grep upgraded,|cut --
delimiter=" " -f1`

echo "$updateChecker";

apt-get -s upgrade

${font
DejaVuSans:bold:size=8}Update
s:$font ${execi 300
/path/to/script}

chmod +x /path/to/script

CCOOMMMMAANNDD && CCOONNQQUUEERR
Written by Lucas Westermann

http://fullcirclemagazine.pastebin.com/jMDg9kzG

6 contents ^

Lucas

COMMAND & CONQUER

Further Scripting

Full Circle Podcast

Review

News

Gaming

mailto:lswest34@gmail.com
http://fullcirclemagazine.org/
mailto:lswest34@gmail.com
http://fullcirclemagazine.pastebin.com/0JzTHjJ1

5 contents ^

Write my “MUSIC” header

Display the status

Start of If statement
• Run python script

every 2 seconds
• Display /tmp/cover

at a position (100,330)
(format of (x,y)
coordinates) with a size of
50px by 50px, updated every
15 seconds

• Display artist
• Display title
• Display a bar with

the time passed and total
time on either end.
End of If statement.

CCOOMMMMAANNDD && CCOONNQQUUEERR
Written by Lucas Westermann

CCoonnkkyy -- PPaarrtt 22

http://lswest.deviantart.com/
http://lswest.deviantart.com/#/d360pfy
http://lswestfcm.pastebin.com/rrCS0hDt
http://lswestfcm.pastebin.com/iX7Y7W3v

6 contents ^

Lucas

COMMAND & CONQUER

Full Circle Podcast

Review

News

Gaming

mailto:lswest34@gmail.com
http://fullcirclemagazine.org/
https://bbs.archlinux.org/viewtopic.php?pid=875306#p875306
mailto:lswest34@gmail.com

5 contents ^

To-Do List

CCOOMMMMAANNDD && CCOONNQQUUEERR
Written by Lucas Westermann

TToo--DDoo LLiisstt

createToDo.sh:

#!/bin/bash
file=~/ToDo.txt
toDo=~/toDo.txt
if [[-e $toDo]]; then
 `rm "$toDo"`
fi
while read line; do
 date=`date -d"$(echo "$line"|sed 's/\(.\) -.*$/\1/g')" +%s`;
 echo "$(echo "$line"|sed -e s/".*-"/"$date -"/g)" >> "$toDo";
done < "$file"

if [[-e "$toDo"]]; then
 temp=`sort -n "$toDo"`
 echo "$temp" > "$toDo"
fi

#!/usr/bin/env python
import os

home=os.path.expanduser("~")

for root, dirs, files in
os.walk(os.path.join(home,"Reminders")):
 for infile in [f for f in files]:
 if(infile.endswith("~")!=True):
 fh=open(os.path.abspath(os.path.join(root,infile)))
 for line in fh:
 print("- "+line, end=' ')
 fh.close()

6 contents ^

Lucas

COMMAND & CONQUER

Zenity

<command>| tee > (zenity --
progress --pulsate) >file

zenity -
-questio
n --
test
“Question

?”; echo $?

<command>|zenity --text-info
--width <size in pixels>

input=$(zenity --entry --
text "How are you?" --entry-
text "enter text here");
echo $input

zenity --error --text “An
error occurred!”

printToDo.sh:

#!/bin/bash
toDo=~/toDo.txt
while read line; do
 if [["$line" != ""]]; then
 date=`date -d@"$(echo "$line"|sed -e s/"-[^-]*$"//g)" +"%a %b %d %H:%M"`
 echo "$(echo "$line"|sed -e s/".*-"/"$date -"/g)";
 fi
done < "$toDo"

mailto:lswest34@gmail.com
mailto:lswest34@gmail.com

5 contents ^

Pre-coding lua_load
/home/lswest/conky_testing/ri
ngs-v1.2.lua

lua_draw_hook_pre ring_stats

CCOOMMMMAANNDD && CCOONNQQUUEERR
Written by Lucas Westermann

CCoonnkkyy aanndd LLuuaa

Clock
Configuring the clock.

{
name='time',
arg='%I',
max=12,
bg_colour=0xffffff,
bg_alpha=0.1,
fg_colour=0xffffff,
fg_alpha=0.4,
x=165, y=170,
radius=89,
thickness=7,
start_angle=0,
end_angle=360

},

http://lswest.deviantart.com/#/d3ay5fb
http://londonali1010.deviantart.com/art/quot-Rings-quot-Meters-for-Conky-141961783

6 contents ^

COMMAND & CONQUER

if pt['arg'] == '%S' then
cairo_arc(cr, xc, yc,
ring_r, angle_0,
t_arc+arc_w) end

${goto 115}${voffset
150}${time %A}

${goto 115}${time %b %d %Y}

MPD Widget

{
name='time',
arg='%M',
max=60,
bg_colour=0xffffff,
bg_alpha=0.1,
fg_colour=0xffffff,
fg_alpha=0.4,
x=165, y=170,
radius=79,
thickness=7,
start_angle=0,
end_angle=360

},
{

name='time',
arg='%S',
max=60,
bg_colour=0xffffff,
bg_alpha=0.1,
fg_colour=0xffffff,
fg_alpha=0.4,
x=165, y=170,
radius=70,
thickness=5,
start_angle=0,
end_angle=360

},

7 contents ^

COMMAND & CONQUER

function
conky_my_flag(my_arg)
 flag = my_arg
 return ""
end

local
updates=conky_parse('${update
s}')
 update_num=tonumber(updat
es)

 if update_num>5 then
 for i in
pairs(settings_table) do
 setup_rings(cr,se
ttings_table[i])
 end
 end

if tonumber(flag) == 1 then
<text from above>
end
cairo_destroy(cr)

{
name='mpd_percent',
arg='',
max=100,
bg_colour=0xffffff,
bg_alpha=0.1,
fg_colour=0xffffff,
fg_alpha=0.4,
x=70, y=170,
radius=60,
thickness=7,
start_angle=0,
end_angle=360

},

if tonumber(flag) == 1 then
 local updates=conky_parse('${updates}')
 update_num=tonumber(updates)

 if update_num>5 then
 for i in pairs(settings_table) do
 setup_rings(cr,settings_table[i])
 end
 end
end
cairo_destroy(cr)
end

${lua my_flag 0}
${if_mpd_playing}
${lua my_flag 1}
${execi 2 python /usr/bin/mpd-cover}
${image /tmp/cover -p 40,138 -s 60x60 -u 15}
${if_match "${mpd_status}" == "Paused"}
${offset 137}${voffset 40}${font
DejaVuSans:bold:size=10}Paused
$endif
${if_match "${mpd_status}" == "Playing"}
${offset 137}${voffset 20}${font
DejaVuSans:bold:size=10}${mpd_artist}
${offset 137}${font DejaVuSans:size=9}${scroll 38
${mpd_title}}$font
$endif
$endif

8 contents ^

Lucas

COMMAND & CONQUER

imlib_cache_size 0 Scripts:

mailto:lswest34@gmail.com
https://bbs.archlinux.org/viewtopic.php?id=112708
mailto:lswest34@gmail.com
http://pastebin.com/SpC6bcn7
http://pastebin.com/iZFdZAeg
http://pastebin.com/zkVVHkYk
http://pastebin.com/BDa5MHuR
http://pastebin.com/ZX4pLbta
http://ucubed.info

full circle magazine #48 5 contents ^

T
his month, I felt I would

share with you something

I just recently learned

about. The topics I'll be

covering apply only to those

readers who either use iBus/SCIM

and aren't happy with it, or who

have it running and are happy with

it - but whose

Japanese/Chinese/etc. doesn't

appear in a legible font in rxvt-

unicode. Also, I'd like to take a

moment to announce that next

month I hope to do a question and

answer session for C&C readers. If

you have questions about Linux in

general, the command-line, or me

as an author, feel free to send your

questions to lswest34@gmail.com

before the 28th of April. I will be

selecting a bunch of questions to

answer next month. Requests for

articles are also welcome.

As some of you probably know,

I wrote an article on iBus in issue

#43 of FCM. I hadn't used iBus

since I was comfortable with SCIM.

However, an update recently

disabled SCIM, and so I tried iBus.

What really got me was that I

couldn't switch between hiragana

and katakana easily, so I decided to

take a suggestion from a friend of

mine and tried out uim.

Surprisingly, uim doesn't block my

dead keys in rxvt-unicode, and

allows easy switching between

hiragana and katakana. Below is

how I configured it for use.

uim & uim-fep:

From the homepage

(http://code.google.com/p/uim/):

“uim's goal is to provide simple,

easily extensible and high code-

quality input method development

platform, and useful input method

environment for users of desktop

and embedded platforms. See

what's uim? for further

information.”

First, you'll need to install it:

sudo apt-get install uim uim-
gtk2.0 uim-qt uim-qt3 uim-
fep uim-anthy

This should cover uim support

for terminals, QT applications, and

GTK applications using anthy.

There are a number of other

packages offering applets,

different dictionaries, and utilities,

that may be of interest to some

people.

Once you've installed it,

running uim-toolbar-gtk-systray

will give you a system tray icon.

Right-click on it and choose

preferences. Here, I would adjust

the list of enabled input languages

to only the ones you need, and

adjust the global key bindings to

your preferences. If you find that

the system tray icon is practically

invisible, it's because too much

information is being displayed in

the one “icon” width. To adjust

this, open the preferences, and,

under “Toolbar”, uncheck

everything, and set the enabled

toolbar buttons per language that

you use to just “Input Mode”. This

will reduce it to one icon - making

it readable again. Also, in order to

get it working, you'll need to add

the following to /etc/profile (or

.bashrc, or .zshrc):

export XMODIFIERS=@im=uim

export GTK_IM_MODULE="uim"

export QT_IM_MODULE="uim"

Once you've set these

variables, you should run the

following in a terminal:

gtk-query-immodules-2.0 >
/etc/gtk-2.0/gtk.immodules

This will re-create the

gtk.immodules file, which specifies

to GTK programs which Input

Method types are available.

Uim-fep is a Front-End

Processor for terminal emulators.

Basically, it allows you to type

Japanese in a terminal emulator

(rxvt-unicode in my case), without

relying on uim-xim (which is a bit

of a resource hog). In order to get

it working, you'll need to add uim-

fep to the end of your .bashrc, or

your .zshrc, or whatever shell

you’re using. If you get a warning

that uim-fep is already running,

you can add “clear” (without the

quotes) after it, so that it hides the

message. Once it's running, you'll

have a line at the end of your

terminal that looks something like

CCOOMMMMAANNDD && CCOONNQQUUEERR
Written by Lucas Westermann

AAssiiaann LLaanngguuaaggee SSuuppppoorrtt

http://code.google.com/p/uim/
mailto:lswest34@gmail.com

full circle magazine #48 6 contents ^

Lucas has learned all he knows from
repeatedly breaking his system, then
having no other option but to
discover how to fix it. You can email
Lucas at: lswest34@gmail.com.

COMMAND & CONQUER
this:

Using the global shortcut for

uim will result in the icon at the

end changing to the input method,

and allows you to type Japanese in-

line in the terminal.

Rxvt-unicode:

In case you have the problem

that your Japanese is nearly

unreadable in rxvt-unicode (this

may apply to other terminal

emulators as well, but I haven't

tested it), then you can add the

following to your .Xdefaults:

URxvt.preeditType:
OnTheSpot,None

URxvt.imLocale: ja_JP.UTF-8

URxvt.font: xft:Anonymous
Pro:size=11:antialias=true:au
tohint=false,xft:IPAGothic:si
ze=11:antialias=true

URxvt.boldFont: xft:Anonymous
Pro:size=11:weight=Bold:antia
lias=true:autohint=false,xft:
IPAGothic:size=11:weight=Bold
:antialias=true

This, basically, tells urxvt to

expect Japanese input from uim.

The fonts are actually a list of two,

as you can see. Anonymous Pro is

the terminal font I use for

everything, but if rxvt-unicode

can't find the symbols for

something in that font, it will

move on to the next one in the list

(or a fallback font if there is no

such symbol in any font listed).

This allows you to have support for

multiple languages without

compromising the readability of

Latin symbols. Also, you may see

some people using urxvt.* instead

of URxvt.* - which can be

problematic if you set the name of

your terminal from a shortcut (i.e.

urxvt -name ncmpcpp -e ncmpcpp).

The first section of these

preferences tells the system that

the WM_CLASS of the program is

that we want to affect, and the

lowercase “urxvt” is the first of the

list, which is set using the -name

argument. If, instead, you use

“URxvt”, then it will not change

depending on the -name switch. To

see what I mean, enter the

following command into a

terminal, and click on rxvt-unicode.

xprop|grep "^WM_CLASS"

Which gives you something like

this:

WM_CLASS(STRING) = "urxvt",
"URxvt"

Now you should have a fully

functional uim setup, and

shouldn't have had to compromise

any functionality in your terminal

either. If you have any suggestions,

or requests for articles, feel free

to email me at

lswest34@gmail.com. Also, don't

forget your questions! I will need

the questions sent in before the

28th of April!

mailto:lswest34@gmail.com
mailto:lswest34@gmail.com

full circle magazine #49 5 contents ^

O
n April 22nd, reader

John Niendorf

contacted me to

request an article on

Graphicsmagick. In response to his

email, I plan to cover the basic use-

cases of graphicsmagick

(henceforth referred to as “gm”), a

more advanced use (batch

processing), and creation of MIFF

files as visual image directories.

If your needs are anything like

mine, you'll find that gm is

excellent if you want to do a batch

conversion, or if you want to

quickly create a thumbnail from a

large image without opening a

graphics app. Before reading the

list, please take into account that

<something>* means that it can be

repeated indefinitely, and

anything in square brackets is

optional (but useful to know

about). So, without further ado,

here's a list of commands I find

useful, and keep in mind these are

basic frameworks:

gm identify <file>
lists information on format and

size of image, and also displays

status of file (incomplete,

corrupted, etc).

gm montage
[<options><input>]* <output>
Combines all the input files into

the single output file, with some

formatting options (tiling, display

image name below image, etc).

gm mogrify <options> <input
file>
Transforms the file.

gm convert <options> <input
file> <output file>
Transforms the file (same as

mogrify, except that mogrify

overwrites the file).

gm composite <file to
change> <base file> [<mask
file>] <output file>
Merges, blends, and masks the

files to create a new image.

This is just a very basic outline of

the possible commands, and a

basic framework of arguments

that can be used with it. As for

common options:

-geometry
<height>x<width><+/-><x><+/-
><y>

This option specifies the geometry

of the image window, including x

and y offset. Example: -geometry

1600x1050+10+10.

-size <height>x<width>
This option is passed before the

input file, and allows jpeg images

to be read in as a small size, in

order to cut down processing time.

Great for batch creation of

thumbnails. Example: -size

170x160.

-thumbnail <height>x<width>
 This option uses preset options to

create a thumbnail quickly.

-resize <height>x<width>
This option actually scales the

image to the supplied size.

-gaussian <radius>{x<sigma>}
This option applies a gaussian blur

to the image. Sigma refers to the

standard deviation. Generally

you'll need only the radius option.

-quality <value>
This option sets the quality of the

output image (for

JPG/MIFF/TIFF/PNG). <value> can

be an integer between 0 and 100

(where 100 = best quality, lowest

level of compression).

-crop <width>x<height>{+-
}<x>{+-}<y>{%}
This option allows you to crop the

image to the size you specify (and

supply an offset).

This list of options should be

enough to get you started and

experimenting. Once you've found

a command you like, with suitable

options, you may want to apply it

to a large section of files within

the current directory. In order to

do so, you would use a command

similar to this (see below for

explanation of options):

find . -name "*jpg" | xargs -
l -i basename "{}" ".jpg" |
xargs -l -i gm convert -
quality 100% "{}.jpg"
"{}.png"

Here, find . -name “*jpg”

CCOOMMMMAANNDD && CCOONNQQUUEERR
Written by Lucas Westermann

“
[Graphicsmagick] is
excellent if you want
to do a batch
conversion...

GGrraapphhiiccssmmaaggiicckk

full circle magazine #49 6 contents ^

Lucas has learned all he knows from
repeatedly breaking his system, then
having no other option but to
discover how to fix it. You can email
Lucas at: lswest34@gmail.com.

COMMAND & CONQUER
returns a list of all jpg files in the

current directory, which gets

passed to xargs, which goes line-

by-line (“-l”) and removes the

suffix(“.jpg”) from the list (“{}”)

using basename. Afterwards, the

list is passed to xargs again, and it

then executes gm convert -quality

100% “{}.jpg” “{}.png”, which

essentially takes each image and

converts it to a png file. The

middle-step is necessary to avoid

having files called “*.jpg.png” after

batch is complete. This trick could

also be used for cropping, editing,

or resizing a large number of files.

Last, but not least, I'll be

covering how to create a visual

image directory (a file of

thumbnails of the images within a

folder). To create the file, use this

command:

gm convert 'vid:*.jpg'
directory.miff

The miff extension stands for

the ImageMagick Magick Image

File Format. The reason for the

format is due to the fact that gm

was forked from imagemagick

back in 2002. In order to display

the file afterwards, simply run the

command:

gm display directory.miff

If you're wondering why this

might be useful, imagine having

thousands of photos on one PC,

and you're looking for a single one.

Instead of working on that

computer and trying to find the

file, you could copy over the miff

file and browse it at your leisure,

or use it to create a catalogue of

thumbnails.

Hopefully you've found the tips

in this article helpful, and will

continue to put them to good use.

If you have any requests or

questions, you can reach me at

lswest34@gmail.com. Please put

the words “Command & Conquer”,

“C&C”, “Full Circle Magazine”, or

“FCM” in the subject line, so I don't

overlook it. Also, please try to

write the emails in English or

German, since I otherwise have to

rely on Google Translate.

Your Hosts:

Robin Catling

Ed Hewitt

Dave Wilkins

Audio: Victoria Pritchard

Show Notes

00:42 WELCOME and INTRO

01:04 SINCE LAST TIME…

04:55 REVIEW Issue #48 of Full Circle Magazine

12:05 REVIEW: Ubuntu 11.04

57:26 CONTRIBUTE

1.26:23 FEEDBACK

1.27:19 OUTRO AND WRAP

mailto:lswest34@gmail.com
mailto:lswest34@gmail.com
http://fullcirclemagazine.org

full circle magazine #50 5 contents ^

Before I begin this month's article,

I would like to share two of John

Niendorf's uses for gm (thanks for

sharing them!). They are:

alias imgresize='gm mogrify -
resize 640x480 *.jpg *.JPG'

alias frameall='gm mogrify -
mattecolor yellow -frame
5x5+0+5 *.JPG *.jpg *.jpeg
*.png'

These aliases could be either

pasted into your .bashrc file, or to

a dedicated aliases file. The upper

command resizes all the jpeg files

to 640 x 480, and the second one

adds a frame around all jpeg and

png files.

N
ow, on to this month's

article. As some of you

may know, typing

mathematical formulae

(in lectures, or classes, or for any

other reason) within programs

such as OpenOffice or LibreOffice

is not the easiest thing in the

world. Especially when you start

getting into set theory or other

advanced mathematical concepts

with Greek letters, symbols like

“for all”, and so forth. For these

sorts of things, I highly

recommend using LaTeX (see Issue

11 for a basic introduction to

LaTeX). In this article, I will be

introducing you to some math

packages and some useful tips and

tricks for formatting mathematical

formulae nicely. As for software,

I'm quite fond of Texmaker, and

the texlive packages offered in the

official Ubuntu repositories should

include all the packages I refer to

here.

Document Preamble

The preamble is all the text

included before the

\begin{document} line in Latex.

This includes document settings,

headers, footers, package imports,

and package settings. My typical

math documents contain the

following packages:

tikz (for diagrams/graphs, for

which I load the

decorations.markings tikz library)

amsmath – offers enhancements

to all basic mathematical

functionality

amsfonts – offers special math

formatting (math calligraphy

(\mathcal{}), math block text

(\mathbb{}), etc.)

amssymb – offers the ability to

display numbered equations, in-

line math, etc.

hyperref (when using a table of

contents) – Allows the creation of

click-able links in TeX documents.

Below is an actual preamble

that I use for my Linear Algebra

notes (the document section

CCOOMMMMAANNDD && CCOONNQQUUEERR
Written by Lucas Westermann

LLaaTTeeXX

\documentclass[12pt,a4paper]{article}
% page counting, header/footer
\usepackage{fancyhdr}
\usepackage{lastpage}
\usepackage[ngerman]{babel}
\usepackage{tikz}
\usetikzlibrary{decorations.markings}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{graphicx}
\usepackage[utf8]{inputenc}
\usepackage{hyperref}
\addtolength{\oddsidemargin}{-.525in}
\addtolength{\evensidemargin}{-.525in}
\addtolength{\textwidth}{1.5in}
\hypersetup{unicode=true,pdfborder={0 0 0 [0 0]},
linkcolor=blue}
\title{Lineare Algebra}
\author{Lucas Westermann}
\pagestyle{fancy}
\fancyhead{}
\fancyfoot{}
\fancyhead[L,L]{Lineare Algebra}
\fancyhead[R,R]{Lucas Westermann}
\fancyfoot[R,R]{Seite \thepage\ von \pageref{LastPage}}
\fancyfoot[L,L]{\hyperlink{contents}{Inhaltsverzeichnis}}
\renewcommand{\headrulewidth}{0.4pt}
\renewcommand{\footrulewidth}{0.4pt}
\setlength{\headheight}{16pt}

full circle magazine #50 6 contents ^

COMMAND & CONQUER
consists of only two include

statements – and the references

for utf8 and ngerman are because

my lecture is in German).

TikZ is probably the most

complicated package to use, so I

will cover it first. The following is

the code used to create graph A:

\begin{tikzpicture}[node
distance=2cm, auto]

\node (1) {$\hat{1}$};

\node (2) [right of = 1]
{$\hat{2}$};

\node (3) [below of = 2]
{$\hat{3}$};

\draw[decoration={markings,ma
rk=at position 1 with
{\arrow[ultra
thick]{>}}},postaction={decor
ate}] (1) to node {1} (2);

\draw[decoration={markings,ma
rk=at position 1 with
{\arrow[ultra
thick]{>}}},postaction={decor
ate}] (2) to node {3} (3);

\draw[decoration={markings,ma
rk=at position 1 with
{\arrow[ultra
thick]{>}}},postaction={decor
ate}] (3) to node {2} (1);

\end{tikzpicture}

Graph A

This code creates 3 nodes

(named 1, 2 and 3). The

information in the braces (“{}”) is

the label for the node (what is

displayed), so leaving it blank

results in an empty node. The next

three lines “\draw” create the lines

between nodes (using the node

names – which is in the normal

brackets), and labelled again by

what’s within the braces.

Using the math packages to

create and align equations:

\begin{align*}

(\mathbb{K}_1^1) & \alpha
+(\beta + \gamma)= (\alpha

+ \beta)+\gamma \\

(\mathbb{K}_1^2) & \alpha +
0 = 0 + \alpha = \alpha \\
(\mathbb{K}_1^3) & \alpha
\cdot -\alpha = -\alpha
\cdot \alpha = 0 \\

(\mathbb{K}_1^4) & \alpha +
\beta = \beta + \alpha

\end{align*}

This results in the text shown

below.

The align* environment allows

you to use tabbing characters (“&”)

to align the text nicely. This is

especially useful when doing a

proof, and you want to align the

equations at their equals signs.

The \mathbb{} results in the

blocked K. The “_” and “^” refers

to sub and superset. If you have a

super/subset that is longer than a

single character, you will need to

enclose it in braces. The \alpha,

\beta, and \gamma refers to the

Greek letters. The \cdot is a

multiplication sign, the double

backslashes denote line breaks,

and the rest is self-explanatory.

Other useful commands are

things like:

“\forall” (the upside-down A

symbol)

“\exists” (reversed E)

“\in” (the curved e-symbol used

when referring to sets)

“\cup” (union symbol – set theory)

“\cap” (intersection symbol – set

theory)

“\mathcal{}” (makes the letter in

braces cursive – used by my

professor when referring to a basis

– a set of linearly independent

full circle magazine #50 7 contents ^

Lucas has learned all he knows from
repeatedly breaking his system, then
having no other option but to
discover how to fix it. You can email
Lucas at: lswest34@gmail.com.

COMMAND & CONQUER

vectors)

I hope you've found this article

useful. I could have covered more

examples, but regardless of how

many I covered, it would still suit

only a small number of use-cases.

As such, you should view these as

examples of what you can do with

LaTeX. See the further reading

section for a link to a useful

manual. If you've any questions, or

requests, email me at

lswest34@gmail.com. Please put

the words Full Circle Magazine,

FCM, or C&C in the subject line, so I

don't overlook it.

Further Reading:

http://en.wikibooks.org/wiki/LaTeX

 – Wikibook covering a large

amount of standard uses of LateX.

For all other non-standard uses, a

quick google search should suffice.

http://sourceforge.net/projects/pg

f/ - Included in the zip file (see the

Downloads section) is a great

manual for many uses of the TikZ

package.

Server Circle is a new question and answer site run by

techies.

Users with any level of experience can ask technical

questions for free about anything server related, and

receive answers from trusted experts, who are rated by

the community.

With time you can earn

reputation points, and even

financial rewards, by

contributing your answers to

questions from other people.

http://www.servercircle.com

NOTE: Server Circle is not affiliated with, nor endorsed by, Full Circle magazine.

mailto:lswest34@gmail.com
mailto:lswest34@gmail.com
http://en.wikibooks.org/wiki/LaTeX
http://sourceforge.net/projects/pgf/
http://www.servercircle.com
http://www.servercircle.com

29 contents ^

HHOOWW TTOO CCOONNTTRRIIBBUUTTEE
Ful l Circle Team

Edit or - Ronnie Tucker

ronnie@fullcirclemagazine.org

Webmast er - Lucas Westermann

admin@fullcirclemagazine.org

Edit ing & Proof reading

Mike Kennedy, Gord Campbell, Robert

Orsino, Josh Hertel, Bert Jerred, Jim

Dyer and Emily Gonyer

Our thanks go to Canonical, the many

t ranslat ion teams around the world

and Thorst en Wilms for the FCM logo.

FULL CIRCLE NEEDS YOU!
A magazine isn't a magazine without art icles and Full Circle is no

except ion. We need your opinions, desktops, stories, how-to's,

reviews, and anything else you want to tell your fellow *buntu users.

Send your art icles to: art icles@fullcirclemagazine.org

We are always looking for new art icles to include in Full Circle. For help and advice

please see the Of f icial Ful l Circle St yle Guide: ht tp:/ /url.fullcirclemagazine.org/75d471

Send your comment s or Linux experiences to: let ters@fullcirclemagazine.org

Hardware/sof tware reviews should be sent to: reviews@fullcirclemagazine.org

Quest ions for Q&A should go to: quest ions@fullcirclemagazine.org

Deskt op screens should be emailed to: misc@fullcirclemagazine.org

... or you can visit our sit e via: fullcirclemagazine.org

Please note:
Special editions are

compiled from originals

and may not work with

current versions.

EPUB Format - Most edit ions have a link to the epub f ile

on that issues download page. If you have any problems

with the epub f ile, email: mobile@fullcirclemagazine.org

Issuu - You can read Full Circle online via Issuu:

ht tp:/ / issuu.com/fullcirclemagazine. Please share and rate

FCM as it helps to spread the word about FCM and Ubuntu.

Magzst er - You can also read Full Circle online via

Magzster: ht tp:/ /www.magzter.com/publishers/Full-Circle.

Please share and rate FCM as it helps to spread the word

about FCM and Ubuntu Linux.

Get t ing Ful l Circle Magazine:

For t he Ful l Circle Weekly News:

You can keep up to date with the Weekly News using the RSS

feed: ht tp:/ / fullcirclemagazine.org/ feed/podcast

Or, if your out and about , you can get the Weekly News via

St itcher Radio (Android/ iOS/web):

ht tp:/ /www.st itcher.com/s?f id=85347&ref id=stpr

and via TuneIn at : ht tp:/ / t unein.com/radio/Full-Circle-Weekly-

News-p855064/

Special Editions - Jonathan Hoskin

